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Abstract 

 
     This dissertation research makes contributions towards the evaluation of developing 

Automatic Target Recognition (ATR) technologies through the application of decision 

analysis (DA) techniques.  ATR technology development decisions should rely not only 

on the measures of performance (MOPs) associated with a given ATR classification 

system (CS), but also on the expected measures of effectiveness (MOEs) of the potential 

end product.    

     The purpose of this research is to improve the decision-making process for ATR 

technology development.  The basis of the research is a decision analysis framework that 

allows decision-makers in the ATR community to synthesize the performance measures, 

costs, and characteristics of each ATR system with the preferences and values of both the 

ATR evaluators and the warfighters.  The inclusion of the warfighter’s perspective in the 

decision-making process is important in that it has been proven that basing ATR CS 

comparisons solely upon performance characteristics does not necessarily ensure superior 

operational effectiveness.  The process for constructing an evaluator and warfighter DA 

framework is described.  The methodology also provides a means for capturing the 

relationship between MOPs and MOEs via a combat model.  An example scenario 

demonstrates how ATR CSs may be compared.  Sensitivity analysis is performed to 

demonstrate the robustness of the MOP to value score and MOP to MOE translations.  A 

multinomial selection procedure is introduced to account for the random nature of the 

MOP estimates.  Finally, research contributions and future directions are highlighted. 
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AUTOMATIC TARGET RECOGNITION CLASSIFICATION SYSTEM  
 

EVALUATION METHODOLOGY 
 
 
 

I. Introduction 
 
 
 
1.1  General Discussion 

 
 This dissertation research makes contributions towards the evaluation of automatic 

target recognition (ATR) classification systems (CSs).  Though ATR technology has been 

under development for quite some time, ATR CS evaluation theory is in its infancy.  No 

generally accepted methodology exists for evaluating multiple ATR CSs for the sake of 

comparison.  One aspect of the difficulty lies in the magnitude of the associated set of 

performance measures, costs, and system characteristics for each ATR CS.  This set is 

often overwhelming and generally leads to a non-dominating solution within ATR CS 

comparisons.  Thus, it is necessary to fuse the subjective preferences of the various 

decision-makers with the objective realizations of the given performance measures, costs, 

and system characteristics when making decisions which affect the lifecycle of ATR 

technology development.  
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1.2  Motivation 
 

 1.2.1  ATR Technology Evaluation Interest.   

 Improving ATR technology evaluation is of interest to the Sensors Directorate of the 

Air Force Research Laboratory (AFRL/SN) for its application to unsolved problems 

associated within the Deputy Under Secretary of Defense (DUSD) Benchmarking 

(DUSD-BM) program.  The decision situation involves the evaluation of several ATR 

CSs, each having multiple performance measures with which to compare, throughout the 

life cycle of the DUSD-BM program.  Decisions made throughout the program depend on 

the ability to evaluate a single CS or to compare the performance of several CSs in a fair 

and useful manner.   

     This research is also of interest to the Requirements Directorate of Air Combat 

Command (HQ ACC/DRSA), which is determining the role and applications of Combat 

Identification (CID) systems.  Though not focused solely on ATR technologies, 

evaluators developing the Targets Under Trees (TUT) program are interested in 

ascertaining the preferences of the warfighter, which is an important part of this research.  

Finding the relationship between ATR measures of performance (MOPs) and operational 

measures of effectiveness (MOEs) is of great importance to each party.   

     1.2.2  Current ATR System Development Methodology.   

     Automatic Target Recognition is a processing problem where a classification system, 

typically in the form of a pattern recognition and classification algorithm, ‘examines’ an 

image to detect and classify objects of interest.  Various aerial platforms employ various 

sensory devices, such as synthetic aperture radar (SAR), forward-looking infrared, 



 

1-3 
 

millimeter wave, or laser radar systems, to collect images for defined military purposes 

(56).  Whether the mission is reconnaissance or targeting, the capacity and capability of 

these platforms to produce data is overwhelming.  Thus, a need for automatically 

exploiting the abundance of images grows.  Currently, human analysis far exceeds the 

capabilities of automated ATR systems.  It is highly desirable to improve automated ATR 

capabilities, which would increase analytic capacity in military intelligence systems as 

well as permit ATR systems to be employed on unmanned platforms.  Automatic Target 

Recognition is widely acknowledged as a critical military capability (20).   

     The objective of an ATR CS is to use the measurable aspects, or features, of a target 

object located in an image to automatically detect and correctly classify a specific target 

type, or class, in a real world environment amid various other objects.  An ATR CS 

analyzes the image to identify particular regions of interest (ROIs) and to then classify 

whether the ROI is a target or not.  Typically, the targets are difficult to separate both 

from normal environmental objects and objects with target-like signatures found within 

the image.   

     ATR CSs generally fall into three classes: statistical pattern recognition, neural 

networks, or model-based recognition.  All ATR CSs have a number of quantifiable 

evaluation measures, such as ATR CS performance, robustness, estimate accuracy, 

employment doctrine, and cost.  In general, these measures are not assessed in total, but 

specific measures are selected when considering decisions for a specific program. Of 

noteworthy importance is the method of dealing with the information concerning the 

class of targets to be classified.  A typical DUSD-BM ATR CS differs from previous 

ATR approaches in that instead of relying on a vast data library of stored target images, 
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the CS is a model-based approach that uses computer-generated templates for classifying 

a particular image (7).  This method requires a smaller data library of stored target images 

(7).   

     Within the ATR research community, a target is an object in an image that is to be 

found, or discriminated, by an ATR CS, but not necessarily destroyed (55).  Thus, 

friendly objects, such as the American M1 Abrams main battle tank (MBT), may be 

labeled as a target in ATR scenarios.  Clutter refers to objects detected within areas of 

unknown or untracked objects, such as fields or forests, which presumably contain no 

targets (2).  Confusers, on the other hand, are objects similar in size and appearance to the 

targets that are tracked during ATR testing, but are not to be detected by the ATR CS (2).  

These non-targets are used to confuse the CS with a target-like signal.  One important 

concept is that when clutter objects are made known, or truthed, during the testing phase, 

they are considered confuser items and are included in the non-target calculations (55).  

The performance of an ATR CS against non-target objects provides insight into the 

algorithm’s sensitivity of detection. 

     The purpose of the DUSD-BM program is to evaluate a wide variety of ATR 

programs to produce an end product that maximizes operational effectiveness.  Several 

different ATR technologies have been developed through several research programs, 

including the Moving and Stationary Target Acquisition and Recognition (MSTAR), the 

Non-Cooperative Target Identification (NCTI) and the Air-to-Ground Imaging (AGRI) 

programs (55).  Since these programs approach similar problems in different ways or 

approach different problems in the same way, the challenge of the DUSD-BM program is 

to identify the pertinent MOPs that appeal to the researchers in the field of ATR for their 
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utility and robustness while striving to optimize the associated MOEs of each ATR 

technology.    

 
 

1.3  Problem Statement 
 
 
     Concerning the theories behind the objective evaluation of ATR CSs, there are several 

limitations.  The first problem stems from the limitations found when testing ATR 

systems.  Assessment of operational performance is difficult due to the small sample size 

of enemy systems and the regulations governing testing site operations.  Both hinder 

accurate recreation of operational conditions during ATR testing.  Next, the number of 

performance measures is often difficult to manage.  Thus, a subset of MOPs is typically 

used to evaluate ATR CSs.  Also, the objective evaluation of ATR systems via MOPs 

generally leads to a non-dominating solution.  Most importantly, it can be shown that 

optimizing a set of ATR performance characteristics does not necessarily lead to an 

optimized solution in terms of operational effectiveness (60).     

     Consider two ATR systems being compared using the performance data listed in 

Table 1.1.  The two systems (A and B) are based upon a declaration and reporting fusion 

concept between multiple sensors.  System A declares a system when both sensors agree 

at a target’s type level, i.e. both sensors claim that a target is a T-72 main battle tank 

(MBT).  System B uses a fusion concept at the target’s Friend/Enemy/Neutral (FEN) 

level.  For System B to declare a target as Friendly or Neutral, it requires both sensors to 

agree.  However, for a target to be declared as Enemy or Ambiguous, at least one sensor 

needs to declare the target as such.  Viewing Table 1.1, it is obvious that one cannot use 
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the MOPs to declare a dominating system based upon performance.  While System A has 

a superior FEN identification confidence rate to System B, it has an inferior FEN 

declaration rate.  In other words, System A has high confidence in its declarations, but it 

does not make as many declarations as System B.  Arguably, System B is the better 

overall system due to its high declaration percentage for all targets.     

 

Table 1.1  Measures of Performance for Hypothetical ATR Systems (60). 

MOPs System A System B 
FEN Identification Declaration Rate < 40% > 60% 
FEN Identification Confidence Rate > 99% > 90% 

Class/Type Identification Declaration Rate < 40% 0% 
Class/Type Identification Confidence Rate > 99% N/A 

Critical Error Rate 0.1% to 1% 0.6% to 2% 
Declaration Percentage for All Targets  39% 63% 

 
 
 
      However, when the performance characteristics of these systems are introduced to a 

combat model, the MOEs, listed in Table 1.2, indicate a different conclusion.  

Operationally, use of System A results in a shorter conflict with fewer allied fatalities, 

more enemies killed per day, and a lower incidence and rate of fratricide.  Thus, simple 

comparisons based solely upon MOPs are insufficient for measuring ATR operational 

effectiveness.  
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Table 1.2  Measures of Effectiveness for Hypothetical ATR Systems (60). 

MOEs System A System B 
Length of Conflict (days) 80 100 

Friends Killed (day/conflict) 3 / 240 5 / 500 
Neutrals Killed (day/conflict) 0 / 0 0 / 0 
Enemy Killed (day/conflict) 25 / 2000 20 / 2000 

Fratricide (day/conflict) 0.35 / 28 0.4 / 40 
Fratricide Error Rate 1.5% 2.0% 

 
 
 

      Therefore, the problem with evaluating ATR systems, especially for the sake of 

comparison, is that MOPs do not directly translate into MOEs and that subjective 

preferences must be incorporated at some point within the decision-making process.  The 

major thrust of this research is to create a practical evaluation methodology within the 

ATR technology research and development system that incorporates the subjective 

preference structure of each decision-maker, includes the objectivity of each pertinent 

MOP, and exploits the relationship between ATR performance characteristics and 

operational effectiveness.  

 

1.4  Organization of Dissertation 
 
 
     The remainder of the dissertation is organized as follows.  Chapter II provides a 

literature review of current ATR evaluation theory and techniques.  Chapter III 

introduces the implementation of the decision analysis (DA) techniques and assumptions 

required for the proposed evaluation methodology.  Two separate DA frameworks are 

constructed: one takes the perspective of the ATR evaluator, the other views evaluation 

from a warfighter perspective.  Data from the MSTAR program illustrates how DA 
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techniques may be implemented when comparing several different ATR systems at the 

ATR evaluator decision-making level.  Chapter III also details how MOPs can be 

translated into MOEs via a combat model.  Chapter IV steps through the process of 

analyzing the outputs of the two decision frameworks via an application using three 

notional ATR CSs.  Chapter V provides an analysis of the sensitivity of the DA 

frameworks.  A linear regression approach, which utilizes a surrogate combat model, 

creates a differentiable response surface of the value scores from which the partial 

differentiations of individual MOPs may be calculated as to identify the salient features 

of the MOP set.  Chapter VI introduces a multinomial selection procedure as a means for 

a decision-maker to compare several different ATR CSs and make defensible selections 

by accounting for the inherent variation found within MOP sampling and by associating a 

level of confidence to the value and utility scores generated through both DA 

frameworks.  Research contributions are summarized and future directions are 

highlighted in Chapter VII. 
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II.  Literature Review 
 
 
 

2.1  Overview 
 
 
     This chapter reviews the pertinent literature on the two main topics required to 

complete this dissertation research—performance measure assessment and performance 

measure comparison for ATR CSs.  Much of the discussion on performance measure 

assessment focuses on air-to-ground ATR research, particularly performance measure 

assessment within the MSTAR program.  Though the performance measure names and 

assessment methods may differ between ATR programs, the general assessment and 

comparison concepts still apply. 

 
 
2.2.  Automatic Target Recognition Performance Measure Assessment. 

 
 

     2.2.1  Background.   

     To understand the problem at hand, it is imperative to grasp the concepts and 

implications of the several measures of performance used within the confines of ATR.  

Model-based ATR CSs are developed on a given set of training conditions and then 

tested with a set of testing conditions, which are not comprised entirely of the same 

training conditions.  The evaluation of CS performance lends insight into the possible 

operational environment performance of the CS.  Operational conditions (OCs) for 

DUSD-BM ATR CSs can be viewed as falling into one of three categories: 

environmental, sensor, and target (4).  Environmental conditions, such as revetments and 

adjacency to other targets, reflect the various backgrounds and obstructions that will 
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make a target difficult to find.  Sensor conditions consist of the variation used in the 

aerial platforms during tests, such as depression angle to target and sensor gain factor.  

Target OCs include the multitude of variations that a specific target type may assume.  

These variations to the target SAR image signature may include the different settings for 

articulated parts (turrets or doors), various external attachments (fuel drums or tools), or 

the different mission setting of a specific vehicle (rescue, command post, or personnel 

carrier) (4).       

     The objective of evaluation is to measure CS performance by constructing and using 

valid performance measures.  With the limiting test scenarios used for training ATR CSs, 

there is considerable thought on what the collected performance measures actually 

measure and what inferences may be drawn from them.  Performance measure validity is 

fulfilled through the following evaluation concepts: accuracy, robustness, extensibility, 

and utility (54,58).  Accuracy refers to the absence of a bias or error of a given CS, under 

the conditions of its training (54,58).  Thus, if a CS is not accurate under test conditions, 

then it is unlikely that the CS will be accurate outside the training conditions (58).  A 

robust system refers to how well a CS performs outside of the training conditions and 

outside of its modeled conditions (58).  Thus, robustness provides information as to how 

an ATR CS will perform under operational conditions (58).  Extensibility is the 

performance of a CS outside of the training conditions but within the modeled conditions 

(58).  The extensibility of a CS tells a decision maker valuable information about 

operational performance by giving insight into the payoff of the model-driven 

components of the CS.  Finally, CS utility is simply the performance of the system under 

operational conditions (58).  Though this is the evaluation concept of most interest and 
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relevance, it is generally the most difficult to obtain (54,58).  Figure 2.1 provides an 

abstract, graphical representation of the relationships between testing, training, 

operational, and modeled conditions.  Figure 2.2 does the same for accuracy, robustness, 

extensibility, and utility. 

Figure 2.1  Venn Diagram of Modeled, Training, and Testing Conditions (58). 

Figure 2.2  Accuracy, Robustness, Utility, and Extensibility (58). 
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     For a generic ATR application, performance is typically assessed using a set of 

probabilities (3).  For the DUSD-BM program, the performance metrics of interest 

include: the probability of detection (pD), probability of identification (pID), probability of 

correct classification (pCC), and probability of false alarm (pFA).  Closely related to pFA is 

the false alarm rate (FAR), which is the ratio of the number of false alarms to the area 

being examined by the sensor.  Another method for assessing CS performance is the use 

of receiver operating characteristic (ROC) curves.  ROC curves are commonly used for 

summarizing the performance of imperfect diagnostic systems, especially in ATR and 

biomedical research (7).  Finally, new performance measures can be created through the 

synthesis or manipulation of existing performance measures.     

     2.2.2 Confusion Matrices.   

     Possibly the most succinct and popular way of reporting classification results of ATR 

CSs is the use of confusion matrices, also known as a discrimination event matrix.  The 

matrix is a square grid with a single row and a single column corresponding to each 

category defined in the data set.  The rows refer to the truth membership of each 

category, while the columns refer to the predicted, or classified, membership.  The (i,j) 

cell in the matrix is the number of predicted classifications on category j that correspond 

to the truth source of category i.  Confusion matrices may also include the relative 

proportions for each cell by dividing the contents of the cell by the total number of 

objects that belong to that row, or truth.  Another method of presenting a confusion 

matrix is to combine all targets and non-targets together into a 2x2 composite confusion 

matrix.  Figure 2.3 depicts the form of a standard confusion matrix and identifies several 

relationships and terms associated with confusion matrices within the fields of pattern 
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recognition, biostatistics, and ATR research.  Tables 2.1 and 2.2 provide numerical 

examples of confusion matrices.   

     The strengths of confusion matrices are the ability to determine the power of a 

diagnostic system over the entire data set and to identify where deficiencies are 

occurring.  Confusion matrices, however, do not provide a measure of effectiveness for 

comparing multiple CSs and only visualize CS performance at a single decision threshold 

point (7). 
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Figure 2.3  Confusion Matrix with Associated Terms and Relationships. 
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     2.2.3 Probability Performance Measures.   

     In order to evaluate how an ATR performs in the real world where the target and non-

target densities are unknown, use of statistical measures that estimate performance 

against the known target densities within a testing environment is necessary.  

Probabilistic performance measures quantify how an ATR CS performs on a given data 

set.  The probabilistic measures detailed in this section are specific to the MSTAR 

program, but the concepts apply to all DUSD-BM programs.    

     The utility of a probability of success measure depends on the scenario in which it is 

used.  The most basic of the several probability measures, the probability of detection, 

designated pD, is simply the probability that a certain number of the total number of 

known targets are detected by the ATR in a test scenario (2).  AFRL defines correct 

detection as correctly declaring that a target in a region of interest (ROI) is, in fact, a 

target.  Next, the probability of correct classification (pCC) is the probability that an ATR 

detects a target and associates the target with the appropriate target type.  AFRL/SN 

defines correct classification as correctly classifying a detected target as a member of its 

actual target class regardless of the specific target type.  For instance, if the ATR detects 

what is known to be a T72 MBT and classifies it as a member of the ‘tank’ class of 

targets, then the result is a correct classification.  Notice that pCC is conditional on 

whether or not the target is actually detected (2).  Thus, the fact that a target is not 

detected does not factor into the correct classification calculation.  The same can be said 

for the next probability, the probability of correct identification (pID).  Correct 

identification, a subset of correct classification, is when an ATR correctly declares the 

specific target type of a detected target.  Thus, were the ATR to detect the T72 and 
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correctly identify it as a T72 MBT, the result is considered a correct identification.  Such 

events are captured in the pID metric (2).  A final probability measure attempts to capture 

the number of incorrect decisions, or false alarms, made by the ATR.  False alarms 

typically occur when an ATR declares a non-target, or confuser, as a target.  The 

probability of false alarm, pFA, is the ratio of detected non-targets to the total number of 

known, or truthed, non-targets.  The following figures provide a visual demonstration of 

how these probability performance measures are calculated. 

 
 

Figure 2.4  Graphical Example of Probability of Detection, pD (3). 
 
 

Figure 2.5  Graphical Example of Probability of Correct Identification, pID (3). 
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Figure 2.6  Graphical Example of Probability of False Alarm, pFA (3). 

 

     A simple, numeric example will provide insight into the calculation of the 

aforementioned performance measures.  In the example, there are 14 known T72 tanks, 

14 M1 tanks, 17 Scud missile launchers, and 41 non-targets (confusers).  Notice that the 

T72 and the M1 both belong to the MBT class while the Scud launcher is a member of 

the Mobile Rocket Launcher System (MRLS) target class.  The following confusion 

matrices provide the fabricated DUSD-BM results.   

 
 

Table 2.1  Example Confusion Matrix. 
        Classified As (Reported) 

  T72 M1 SCUD Non-Target 
Actual T72 12 2 0 0 
(Truth) M1 2 8 3 1 

 SCUD 0 0 7 10 
 Non-Target 0 1 5 35 

 
 

Table 2.2  Example Composite Confusion Matrix. 
        Classified As (Reported) 

  Target Non-Target 
Target 34 

(75.6%) 
11 

(24.4%) 
 

Actual 
(Truth) Non-Target 6 

(14.6%) 
35 

(85.4%) 

= 1
3

PFA =

Detected 
Non-Targets

Existing 
Non-Targets

= 1
3

PFA =

Detected 
Non-Targets

Existing 
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     Thus, this particular ATR reported that the image contained 14 T72s, 11 M1s, 15 Scud 

missile launchers, and 46 non-target objects.  The following equations provide the 

calculations of the given performance measures: 
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     While the example illustrates how the performance measures are calculated, there is 

too little information to gain an overall appreciation of the ATR.  For instance, the area 

covered, terrain type, mission type, or target density is not given.  Also, no performance 

baseline for an acceptable ATR is mentioned.  Perhaps in the same setting the average 

ATR may have a superior performance.  Finally, these performance measures are 

estimates of the true performance measures for the given ATR.  The ATR may perform 

well on such a small data set, but may not over a much larger, more realistic target 

setting.  The practice of placing confidence intervals around these point estimates will be 

mentioned later in the performance measure evaluation section.   

     Finally, consideration should be given to the use of probabilistic performance 

measures between ATR studies.  There are several different ways to compute and label 

these measures since there are several different ATR programs with differing objectives.  
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For instance, the NCTI ATR program incorporates the use of a probabilistic measure 

called pND, since NCTI classifiers also declare a No Decision category in addition to the 

target and non-target declaration decision (3).  Also, DUSD-BM performance measures, 

like pCC and pID, are conditional on the detection results of the CS, while NCTI metrics 

are not conditional (3).  Therefore, although this large variety of measures can be reduced 

to a small independent set, caution must be used when comparing probabilistic measures 

across ATR studies. 

     2.2.4  Rate Measures.   

     A common measure used in ATR evaluation is called the false alarm rate (FAR).  This 

rate is merely the number of false alarms in clutter divided by the area of the imagery 

evaluated by the ATR (2).  This measure offers a glimpse into the clutter density of a 

given area and the propensity of a given ATR CS to detect non-target objects.  Figure 2.7 

depicts how FAR is typically calculated.  The different uses of this metric change the 

ways in which it is measured.  For instance, when measuring the FAR for forward-

looking infrared data, the FAR may be computed as false alarms per frame or per second 

(55).  The strength of the FAR metric is that it is transportable to the area to be observed.  

In other words, if the FAR of a desert-like environment is quantified through testing, then 

when an ATR CS performs in a previously untested desert location, the FAR should be 

similar to the estimated FAR (55).  In fact, since they rely on environmental and sensor 

aspects rather than scenario and target assumptions, estimated FARs are likely to be the 

most reliable and operationally sound metrics that the AFRL COMPASE Center have 

gathered (55).  Since the pFA and FAR performance are related and much of the literature, 
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particularly the extensive medical literature, focuses on pFA, the discussion within this 

report generally uses the pFA metric for false alarm performance.  

 

Figure 2.7  Graphical Example of False Alarm Rate, FAR (3). 
 

     2.2.5  Confidence Intervals.   

     Metrics such as the probabilistic measures are actually point estimates of a true 

performance measure of a given CS.  The calculation of a single number for a given 

performance measure is insufficient in that it ignores the amount of data used to produce 

the quantitative value of the measure.  For example, an ATR designer may suggest that a 

given system may have a pD of 0.756 (as in Table 2.2).  However, since the ATR CS is 

tested on a finite set of data, the true pD is probably not 0.756 (7).  Instead, the true 

parameter probably lies within an interval centered about the point estimate.  This 

confidence interval, constructed from statistical assumptions and the sample size of the 

test, allows the ATR designer to make certain inferences about the experimental 

uncertainty of his CS and its true pD (7).   
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     The general procedure for constructing a confidence interval is to first postulate an 

underlying distribution.  Distributions that are frequently used in the area of ATR 

evaluation are the Gaussian, Binomial, and Poisson distributions (7).  The following 

example illustrates how a confidence interval can be obtained about the point estimate of 

a given performance measure. 

      Suppose an ATR is designed and tested on an independent sample.  For each ROI 

examined by the ATR CS, there are two separate decision alternatives: 









=
classifiedcorrectlyROIif
classifiedyincorrectlROIif

,1
,0

η      (2.5) 

with associated probabilities: P(0) = 1-p and P(1) = p.  This means that η is a Bernoulli 

random variable.  For a series of independent, identical trials, the Binomial random 

variable Y is the number of successful classifications in n trials (41).  Thus, 

Y~binomial(n,p) where:  

    yny pp
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n
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
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
= )1()(     (2.6) 

and the expectation and variance of Y are given by: 

     npYE =)(     and    )1()( pnpYVar −= .     (2.7) 

Using the definition of the probability of detection can make an unbiased estimate for p, 

the true probability of detection: 

  
n
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Now, p̂  is an unbiased estimator for p, so: 
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Using the variance expression for p̂ yields: 
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===     (2.10) 

and the usual method of substituting sample values for unknown parameters in the 

expression for the variance, one can approximate (1-α) confidence intervals for p̂ as: 
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where the normal approximation is used (assuming large test sample size; n > 30) for the 

binomial.  For the example above in Table 2.2 (pD = 0.756 and n = 45), with α = 0.05, the 

following 95% confidence interval is generated for the point estimate: 

=p̂ 0.756 ± 0.1255   or   0.6305 ≤ p̂  ≤ 0.8815.   (2.12) 

     The strength of confidence interval utilization is that it provides a measure of the 

accuracy of the evaluation process.  Thus, small sample sizes propagate large intervals 

about a point estimate in which there is little confidence about the location of the true 

parameter.  Large sample sizes tend to narrow the intervals about a point estimate and 

provide a certain amount of confidence based on the underlying assumptions made about 

the distribution of the data.  Confidence intervals allow the comparison of multiple CSs 

under the same conditions by quantifying the possible variance in CS performance.   

      Confidence intervals are limited in that they provide information on how a CS is 

expected to perform in the future under the same conditions (7).  Confidence intervals are 

not guaranteed to be robust over many different scenarios.  Thus, if any of the operational 

conditions of a given ATR test are changed, the confidence intervals about a performance 

measure point estimate will not be valid over the new conditions. 
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     2.2.6  Hypothesis Testing.   

     Hypothesis testing and point estimation form the two branches of classical statistical 

inference (28).  Confidence intervals reveal insight into the strength of a point estimate.  

Hypothesis testing uses statistical evidence to justify or reject a suspected inference 

through the strength of a given point estimate.  In the typical language of hypothesis 

testing, the null hypothesis, denoted by H0, is a statement made about the given point 

estimate which is being evaluated.  For instance, the null hypothesis may state that the pD 

of a given ATR CS equals a certain value, e.g. H0: pD = 0.8.  The null hypothesis is 

usually tested against an alternative hypothesis, HA., which is typically the opposite of the 

null hypothesis.  Thus, an example of an alternative hypothesis would be HA: pD ≠ 0.8.  In 

order to test a hypothesis, a test of significance approach may be taken.  A hypothesis test 

uses a test statistic based upon a probability distribution.  For instance, a test statistic 

based upon the normal distribution is represented by 

)1,0(0 N

n

xZ ≈
−

=
σ
µ .     (2.13) 

The test statistic, Z0, may now be compared against the probability distribution of a 

standardized normal pdf, N(0,1).  An acceptance region can be thought of as the portion 

of the N(0,1) distribution that is suggested by a given acceptance parameter, generally 

given as an alpha (α) parameter.  If the test statistic lies within an acceptance region, the 

null hypothesis is accepted.  Otherwise, the null hypothesis is rejected, and the alternative 

hypothesis is accepted.   
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     Suppose that a given ATR CS has been tested against 45 known target objects and has 

correctly classified 34 as targets, resulting in a pD of 0.756 (using Table 2.2 as data).  The 

goal of hypothesis testing is to determine, given the above information, whether or not 

the ATR CS meets a designated pD goal for the system.  Further suppose that for an ATR 

CS to be eligible for evaluation continuance, a pD of 0.8 must be demonstrated.  The pD 

value (0.756) of the given CS suggests that this system should be removed from 

consideration of further study since it falls below 0.8.  However, if a hypothesis test is 

performed, the test statistic Z0 is formed as: 

H0  :  pD ≥ 0.8      (2.14) 

HA  :  pD < 0.8      (2.15) 
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where the test statistic is based upon the Binomial distribution, and p0 is the required pD 

performance value (0.8).  Calculating the test statistic and applying the result to the one-

sided hypothesis test (using α=0.1) provides the following: 

Z0 = -0.68723 > -ZA = -1.28.     (2.17) 

Thus, the null hypothesis is accepted (or fails to be rejected), which implies that there is 

no statistical evidence that the pD of the ATR CS fails to meet the pD requirement of 0.8.  

In fact, a pD point estimate value as low as 0.71376 would allow the null hypothesis to be 

accepted.  Figure 2.8 depicts the hypothesis rejection region (shaded) and the value of the 

null hypothesis.  
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Figure 2.8  Graphical Description of Hypothesis Testing Example (α=0.1). 

 

     Hypothesis testing provides a formal approach to the statistical evaluation of CSs.  

However, its weaknesses are similar to those of confidence intervals.  For example, 

confidence interval and hypothesis testing based on the Binomial distribution assumes a 

constant probability of success and a constant variance for all observations.  However, as 

an example of when hypothesis testing may not work in an ATR evaluation context, the 

classification performance of an ATR CS may be different for different targets at 

different aspect and depression angles.  Finally, accepting the null hypothesis does not 

mean that the hypothesis is correct.  The acceptance of a hypothesis simply means that no 

statistical evidence proves that the hypothesis is false.  Accepting a hypothesis is also 

referred to as failing to reject a hypothesis.  Therefore, inferences made with hypothesis 

testing must be used with caution, especially when making inferences about performance 

measures based on small sample sizes. 
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     2.2.7  Receiver Operating Characteristic (ROC) Curve Performance Measures.   

     The receiver operating characteristic (ROC) curve is an important technique in 

summarizing the power of imperfect diagnostic systems that attempt to detect a signal in 

noise (7,23,27,51,66).  An ROC curve describes the relationship between a diagnostic 

system’s sensitivity (probability of selecting true positives) and specificity (selecting true 

negatives) (66).  Though an ROC curve may model the outcomes for multiple alternatives 

or variable decision rules, only two-alternative, forced-decision (2AFC) ROC curves will 

be discussed here in the context of ATR CSs (27).  Figure 2.9 provides examples of ROC 

curves for imperfect diagnostic systems.  Note that the D(n,n) notation is explained in a 

subsequent section. 

 

Figure 2.9  Binormal 2AFC ROC Curves. 
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     The two alternatives typically used in an ATR CS decision-making context are the 

target and non-target classifications.  For the following examples, the distribution that 

represents the target signal will be designated sn (signal plus noise) while the non-target 

signal distribution will be labeled n (noise).  The term signal mentioned here is 

synonymous with the term score in the ATR context.  The response of the ATR classifier 

is restricted to the same alternatives: S denotes the event that the classifier reports a 

target, while N denotes the event that the classifier reports a non-target.   

     Since the objective of the problem at hand is to detect and correctly identify an 

observed signal (score), most probably degraded by noise, it is natural to investigate the 

concepts within signal detection theory.  Signal detection theory refers to the science 

behind the “process of detection and recognition of a wanted, or useful, signal that has 

been degraded by noise” (23).  Two separate concepts form the basis of signal detection 

theory: distribution theory and decision theory.  Distribution theory, of which ROC 

analysis is a subset, refers to the relationships between wanted signal (target) and noise 

(non-target) distributions.  Decision theory refers to the rules used in decision making 

that hope to satisfy some decision goal.  The aspects of decision theory that impact the 

ATR problem are handled by the ways in which the ATR CS measure and compare 

individual scores for each ROI.   

     In terms of distribution theory, the primary challenges to correctly classifying an 

object as a target or non-target are found in (1) the variability of the target and non-target 

ROI values (scores) when observed by an ATR sensor and (2) the tendency of the target 

score distribution to overlap the non-target score distribution, as seen in Figure 2.10.  For 

DUSD-BM ATR CSs, raw data is used to represent the distribution of target scores 
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empirically.  However, for ease of explanation, probability distribution functions (pdfs) 

will be used to represent the score distributions of targets and non-targets.  These pdfs are 

generally assumed to be Gaussian in the medical literature, which is sound theoretically 

due to the properties of the Central Limit Theorem and sound practically due to the ease 

of parameter manipulation (27).  ROC curves based upon two normal distributions 

representing the populations of interest are referred to as N-N ROC curves, or binormal 

ROC curves (23,66).  For the examples depicted in Figures 2.10 and 2.11, the non-target 

pdf is distributed as a N(0,2), and the target pdf is distributed as a N(4,1.5).  While the 

empirical distribution of DUSD-BM ATR target and non-target scores may have a bell-

shape similar to Gaussian distributions, the actual scores tend to have more observances 

farther away from the mean of the distribution, or put simply, the distribution has “fatter” 

tails.  In general, DUSD-BM ATR CSs make no underlying assumption about the 

distribution of target and non-target score distributions (55).   



 

2-20 

Figure 2.10  Target and Non-target Normal pdfs for a 2AFC Task. 
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The likelihood ratio is important in that the observer can control the value of the L(x) 

required for a desired probability of target detection (23).  An observer could raise/lower 

the value of the threshold to decrease/increase the chances of detecting a target.  A 

critical cutoff value, L(x0), results in optimal performance with respect to the stated 

decision goal whenever a decision rule is based upon the likelihood ratio (23).  For 

continuous distributions, consider the case for which P(S|sn) and P(S|n) are determined 

by the corresponding areas in the upper portions of two distributions: 

The coordinates on the ROC curve are 

   ∫
∞

=
0

)|()|(
x

dxsnxfsnSP   and  ∫
∞

=
0

)|()|(
x

dxnxfnSP .   (2.20) 

Differentiating both expressions with respect to the lower limit x0 
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Then, using the chain rule, the ratio can be formed as 
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at the cutoff point, x0.  Thus, the slope on the ROC curve at x0 is equal to the likelihood 

ratio of the cutoff L(x0) (23).  The decision rule then divides the L(x) axis into L(x) > 

L(x0) and L(x) ≤ L(x0) intervals (23).  As a result, the x-axis is divided in similar fashion 

into regions of acceptance (target) and rejection (non-target), as seen in Figures 2.10 and 

2.12 (23).  Since each cutoff, or decision threshold value, represents a diagnostic 

system’s performance at that particular level, a 2x2 confusion matrix that summarizes the 

system’s performance may be generated at each such point (23).  In terms of L(x), an 
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ROC curve is a function which represents the possible set of 2x2 matrices that result 

when the cutoff, L(x0), is varied continuously from its largest possible value to its 

smallest possible value (23).  In terms of x, an ROC summarizes a possible set of 2x2 

confusion matrices, limited by the two probability distributions selected, that results 

when disjoint intervals of the x-axis are successively added to the region of acceptance, 

starting with the empty set (a threshold value where no observed signal from either 

distribution is classified) and ending with the entire x-axis (23).  In other words, the 

cutoff value, x0, generates a ROC curve as the value is continually decreased across all 

possible values of x beginning with a very high value for x0, as seen in Figure 2.11.   

 

Figure 2.11  Sample N-N ROC Curve Generation. 
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two-parameter description system for N-N ROC curves.  The left side subplots of Figure 

2.12 illustrate the Gaussian distributions that represent sn and n.  The difference in the 

means (∆m) remains constant at 0.5, while the standard deviation ratio (s) varies.  The 

markers on the distribution plots indicate where the probability density of either 

hypothesis is the same.  At these points, the slope of the ROC curves (right side subplots) 

at the associated point is unity, indicated by a similar marker on the ROC curve.  Table 

2.3 lists some of the salient features of ROC curves based on pdfs. 

 

Figure 2.12  Expected ROC Curves for the Unequal-Variance Gaussian Case (26). 
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Table 2.3  Salient Features of 2AFC ROC Curves. 

1 An ROC is based upon a pair of pdfs, one conditional upon the event sn, the other 
conditional upon the event n. 

2 Under the assumption that the mean of the sn distribution is greater than that of 
the n distribution, an ROC starts at (0,0), ends at (1,1), and must be 
nondecreasing as long as the observer decreases the value of the cutoff point, x0. 

3 Assuming a pure decision rule is used with respect to each value of x, the slope of 
a ROC curve at a given point is equal to the likelihood ratio associated with the 
cutoff on the x-axis that generates the given point. 

4 For each x0, two disjoint, exhaustive intervals result, which generate a 2x2 matrix 
that corresponds to the false alarm rate (pFA) and the hit rate (pD).  

5 The area under the curve, AUC, is equal to the percentage correct of a diagnostic 
system for a 2AFC task. 

 
 
 

     The ROC curve provides useful metrics and properties for the purposes of 

performance measurement.  In the case of ATR, the ROC curve of a given CS is the 

graph of the probability of detection (pD) versus the probability of false alarm (pFA).  This 

curve summarizes the possible performances of a signal detection system faced with the 

task of detecting a target in the presence of clutter (7).  Thus, as the cutoff value is varied, 

the ROC curve illustrates the relationship between an ATR CS’s correct target 

classification rate and its incorrect non-target classification rate (7).  Closely related to 

this property is the area under the ROC curve (AUC) metric, which is simply the 

percentage correct for the 2AFC task and provides a simple index of signal detectability 

(26).  This principle holds under the following assumptions: (1) that the decision in the 

2AFC task is unbiased and (2) that the observations (ROIs, in the ATR CS context) are 

treated as statistically independent.  The analytical principles have been applied to a wide 

number of ordered, monotonic ROC families, which may differ in the type of probability 

distribution used to generate the signal and clutter data (26).         
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     Consider a two-class example problem where n represents the non-target class and sn 

represents the target class and with a single variable, or score, x ∈ ℜ as depicted in 

Figure 2.10.  Let X be a real-valued random variable and let p(x) be its pdf.  Thus, p(x|n) 

is the conditional pdf representing the distribution of non-target objects while the target 

pdf, p(x|sn), represents the distribution of target objects.  Since the choice of scale for the 

x-axis is arbitrary and is easily transformed, let higher values of x equate to stronger 

indications of target, while lower values of x equate to stronger indications of non-targets.  

The decision threshold value x0 then divides the x-axis into two disjoint intervals.  An 

observed score, x, found in the interval (-∞,x0) is classified as a non-target while an 

observed score lying in the interval (x0,∞) is classified as a target.  The given decision 

threshold boundary, x = x0, then partitions the feature axis into two regions, target and 

non-target, resulting in two types of errors: 

 

Type 1 Error (α):  Misclassifying an actual non-target object as a target object, or 

False Positive (FP). 

Type 2 Error (β):  Misclassifying an actual target object as a non-target object, or 

False Negative (FN). 

 

In Figure 2.12, the shaded portions on either side of the decision threshold line, labeled α 

and β, indicate the two types of error associated with the given cutoff value.  This 

example offers a problem with a low degree of complexity.  Target and non-target 

distributions that are nearly indistinguishable, as well as multiple class features, can 
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easily complicate this type of performance measure (6A).  However, a transformation can 

always be made to a simple one-dimensional space X, where X is the real-valued random 

variable representing the strength of conviction for the non-target (6A).  Therefore, the 

conditional probabilities, PFP and PFN, corresponding to the two types of errors described 

above can be defined as: 

               α = PFP(x0) = P({x > x0 |n}) = P(S|n)    (2.23) 

β = PFN(x0) = P({x < x0 |sn}) = P(N|sn).    (2.24) 

Associated with these two probabilities are their complementary probabilities of correct 

classification, where TP stands for True Positive and TN stands for True Negative:  

     PTN(x0) = P({x < x0 |n}) = P(N|n)        (2.25) 

   PTP(x0) = P({x > x0 |sn}) = P(S|sn).     (2.26) 

The interrelationships among these probabilities and the various terminologies used in 

ATR, statistics, and medicine to describe them are shown in Figure 2.3.  Due to these 

interrelationships, a collection of probability pairs is all that needs to be reported to 

describe the performance of an ATR CS for a particular decision threshold value, x0 (6A).  

The probabilities correspond to specificity, the power to correctly declare true negatives, 

and sensitivity, the power to correctly declare true positives, of the CS. 

     The major strength of ROC curves in CS evaluation is that they do not simply report 

the system’s performance in terms of a target detection batting average for a specific 

decision threshold.  ROC curves enable performance reporting in terms of a pair of 

related indices (detection probability, false alarm probability) for varying thresholds, as 

seen in Figure 2.11 (6A).  ROC curves provide a means for characterizing and 

quantitatively comparing CS designs (6A).  In other words, two ATR CSs can be 
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compared over multiple decision thresholds and over the same feature space by a single 

ROC curve for each CS, usually via the AUC metric.  This will be examined in depth in 

the section dealing with ROC curve comparison metrics. 

     Variants of the ROC curve include: the frequency ROC (FROC), the expected utility 

ROC (EUROC), the localization ROC (LROC), the response analysis characteristic 

(RAC) curve, and the operating curve (29,36,66).  The FROC and EUROC, occasionally 

used in the field of biomedical analysis, merely change the parameter used when 

generating the ROC curve (36).  The LROC, or joint ROC, is a version of the ordinary 

ROC curve that allows the CS to choose a confidence rating and one of m alternatives in 

its classification decisions (61).  The RAC curve depicts the inverse of both the 

probability of false alarm, P(S|n), and the probability of detection, P(S|sn) (61).  Thus, 

the RAC curve is a plot with P(n|S) and P(sn|S) as the x and y axes (61).  The RAC is 

practically useless in that the curves generated takes forms that are not easily indexed and 

the range of the curve depends upon the prior probabilities (61).  The operating curve 

uses the misclassification of known targets as the y-axis (1-pD) and retains the false 

negative axis of the typical ROC curve (30).  The result is a curve that demonstrates the 

power of misclassification by the ATR CS (30).  Like the ROC curve, the area under the 

curve of an operating curve is the preferred performance index in assessment.  A near 

perfect ATR CS generates an area under the curve close to zero (30).  Figure 2.13 depicts 

an operating curve. 
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Figure 2.13  Operating Curve Derived from 2AFC Task. 
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system yields not only a diseased/non-diseased (target/non-target) decision, but also a 

third outcome, such as an undecided decision (21,47).  This third decision alternative 

relates to the declaration question in a typical ATR.  Instead of using the AUC metric, a 

new metric, the volume under the surface (VUS), is used.  This new approach realizes 

new challenges in the comparison of multiple diagnostic systems. 

 
 
2.3  Automatic Target Recognition Performance Measure Comparison 
 
 
     2.3.1  Background.   

     There is considerable theory and literature associated with the concept of performance 

measure comparison.  This section is broken into two sections that correspond to the two 

types of comparison: the use of visual techniques and the use of mathematical techniques 

to compare multiple systems via their performance measures.  The first section lists the 

various graphical techniques used in the comparison of ATR CSs.  The second section 

highlights the various mathematical comparison techniques used in the comparison of 

ATR CSs.  

     2.3.2  Visual Techniques.   

     The strength of these visual techniques is the simplicity with which they can be used 

and their inherent appeal to the human ability to visually compare objects via size, color, 

and shape.  These techniques can typically frame the comparison in a way that is easily 

understandable to a decision maker and can often associate multiple dimensions, large 

amounts of data, and relationships between several systems in a single plot. 
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           2.3.2.1  Visualization Guidelines.   

     Multidimensional variables are often difficult for humans to compare, especially when 

listed in a numerical fashion, such as a table.  Graphs and plots offer an analytical 

window into the trends, oddities, and pertinent features of multi-dimensional data. 

     With the several tasks and concepts to remember when approaching an abstract 

scientific visualization problem, visualization specialists often implement an algorithm of 

engineering guidelines to follow (49).  The typical algorithm highlights several effective 

means of visually displaying multivariate data and associated problem solutions.  One 

such algorithm uses eight engineering design guidelines to lead an analyst through the 

process of visually describing a problem and its solution.  The guidelines are generalized 

in order to accommodate the various problem types encountered by analysts.  The authors 

admit that some of these guidelines may not apply to a given problem, but they expect the 

algorithm to be useful for most tasks and applications (49).  Table 2.4 lists the eight 

guidelines for visualizing multivariate data and problem solutions. 

 

Table 2.4  Eight Visualization Engineering Guidelines (49). 

 Engineering Guideline Description 
1 Task-specific Plots and graphs answer the questions of interest 
2 Reduced Representation Fit data on one screen, if possible 
3 Data Encoding Use glyphs, markers, & colors to represent data 
4 Filtering Reduce amount of data shown through filter rules 
5 Drill Down Visualize data not currently onscreen 
6 Multiple Linked Views Update plot changes on all plots at once 
7 User Interface Allow user to manipulate plots/data 
8 Animation and Motion Animate temporal or physical aspects of data 
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     The first engineering guideline is to keep the visualization task-specific.  The most 

important thought in visually depicting a problem and its solution should be to keep the 

user’s needs in mind.  In other words, being task-specific in scientific visualization 

ensures that the graphs and plots are illustrating what the user wants to know in a way 

that he or she may understand.  If the graphs do not answer the user’s questions, then the 

graphs and plots are irrelevant.  Therefore, this guideline is of utmost importance.   

     The concept of utilizing reduced representation is the next guideline to consider.  This 

concept refers to illustrating the entire data set or results on a single screen.  Doing so 

avoids a user having to flip through several different pages of results and allows the user 

to compare results or different areas of data easily.  Accomplishing this task is not always 

easy.  Care must be given to the type and position of glyphs used to represent the data.  

Also, showing all of the data onscreen should not be something that overwhelms the user; 

it should just be a quick, efficient way to compare trends and dimensions within the data.   

     Data encoding, the third engineering guideline, refers to employing the physical 

attributes of the glyphs effectively in the graphs and plots.  Size, shape, color, and 

position are a few of the attributes that can be used to annotate information within the 

data. 

     Another concept worthy of consideration is that of filtering.  Filtering allows the user 

to toggle between certain aspects of the data.  For instance, if the data set has several 

features used to classify an observation, the user could select to view only a few of the 

features at one time.  This creates a manageable, uncluttered view for the user.  This 

technique can be very useful for very large data sets with many variables. 
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     The drill down technique allows a user to find out information about a feature or 

observation that is not currently onscreen.  For instance, a user could drag a mouse 

pointer over a given data point represented by a glyph in a plot, and a pop-up window 

would display the numerical location of the point.  This technique can be very effective in 

sensitivity analysis; trying to determine which data points have the most effect on the 

solution, and in determining outliers in a data set. 

     The sixth guideline, incorporating multiple linked views, suggests that, when using 

multiple views of the same or similar graph and plots, changes to one plot should carry 

over to the subsequent plots.  This concept creates harmony in the viewing of complex 

data and may uncover trends that may have remained undetected.  The technique also 

saves the user time by automatically changing several plots rather then the user manually 

changing each plot of interest. 

     The seventh guideline shows concern for the one actually visualizing the data by 

calling for user interface of the plot or graph.  Plots and graphs of large or complex data 

sets should incorporate the ability to be directly manipulated by the user.  Some of the 

features may include plot axes changes, plot zooming features, rotateable images, and 

data set selection.  The authors also suggest that this process must be executed quickly 

and that sluggish imaging performance greatly reduces the effectiveness of scientific 

visualization by disenchanting the user.   

     Use of animation and motion is the premise behind the final data visualization 

guideline.  This guideline refers primarily to data sets that have a temporal aspect.  

Motion and animation can be key in determining changes in the data.  One difficulty with 

this technique is the computational power afforded by the visualization platform. 
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          2.3.2.2  Confusion Matrices.   

     Confusion matrices are an efficient and orderly way of presenting the pertinent 

performance information for a given ATR CS.  The matrix structure allows for quick 

comparison between the numeric performance measures of several CSs.  The 

performance measure probabilities are typically the items of interest in a given confusion 

matrix.  Figure 2.14 illustrates the use of confusion matrices in the comparison between 

two different ATR CSs, systems A and B.  CS B seems to perform better as a target 

classifier overall, but does not do as good a job on clutter when compared to CS A.  CS 

A’s major deficiency is the tendency to report actual targets as clutter (false negatives), 

seen in that it misclassified nearly 60% of the Scud MRLSs as clutter.  CS B’s major 

weaknesses are its tendency to misclassify detected T72s and to declare actual clutter as a 

target (false positives).  

 
             Classification System A    Classification System B 

    Classified As (Reported)     Classified As (Reported) 
  T72 M1 Scud Non-

TGT 
  T72 M1 Scud Non-

TGT 
 T72 12 

(86%) 
2 

(14%) 
0 

(0%) 
0 

(0%) 
 T72 10 

(72%) 
2 

(14%) 
1 

(7%) 
1 

(7%) 
Actual M1 2 

(14%) 
8 

(57%) 
3 

(22%) 
1 

(7%) 
 M1 0 

(0%) 
10 

(72%) 
4 

(28%) 
0 

(0%) 
(Truth) Scud 0 

(0%) 
0 

(0%) 
7  

(41%) 
10 

(59%) 
 Scud 0 

(0%) 
1 

(6%) 
15 

(88%) 
1 

(6%) 
 Non-

TGT 
0 

(0%) 
1 

(3%) 
5 

(12%) 
35 

(85%) 
 Non-

TGT 
3 

(7%) 
2 

(5%) 
5 

(12%) 
31 

(76%) 
Figure 2.14  Example Composite Confusion Matrices. 

   

     While a typical confusion matrix contains the numerical performance description of a 

given CS, the confusion matrix can be transformed into a matrix of shaded blocks that 

correspond to the numeric values of the original matrix (7).  This technique enables an 
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evaluator to identify the strengths and inadequacies of a particular CS and differences 

between multiple CSs through the use of color.  The darker the shading of a square in the 

grid indicates that the classifier associated (classified) a detected target to the given row 

(truth) more frequently (7).  A near perfect classifier produces a confusion matrix with a 

very dark right hand diagonal and very pale entries elsewhere (7).  Figure 2.15 illustrates 

the use of shading in confusion matrices for the purposes of comparing the same two 

ATR CSs.  Viewing the matrices indicates that the CS B does a better job at correctly 

classifying M1s and Scud MRLSs, which is the same conclusion drawn from the 

composite confusion matrix comparison in Figure 2.14.  The darker diagonal of CS B 

indicates it is closer to a near-perfect classifier than the CS A.  However, depending on 

the desired goal, CS A could be considered better.  For instance, if the objective is to find 

the CS that most correctly classifies T72 MBTs, then CS A, which correctly classified 

86% of the T72s, could be considered the better system. 

 

ATR Classification System 1    ATR Classification System 2 
           Classified As (Reported)   Classified As (Reported) 

  T72 M1 M10
9 

Non-
TGT 

  T72 M1 M109 Non-
TGT 

 T72      T72     

Actual M1      M1     

(Truth) M109       M109     

 Non-
TGT 

     Non-
TGT 

    

Figure 2.15  Typical Gray Level Confusion Matrices. 
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     Though it allows quick comparison between the performances of two systems, one 

disadvantage of the gray level confusion matrix is the inability to distinguish between 

slight differences of color.  For instance, it is difficult for the human eye to detect a 

difference between a 75% gray level and an 80% gray level.  This disadvantage requires a 

better method of visual comparison when dealing with CSs that are very similar in 

performance.  The previous example offered two classification systems with stark 

contrasts.  Thus, the advantages of the technique were readily apparent. 

          2.3.2.3  Error-Reject Curves.   

     Doubt reports are a method of allowing a pattern recognition classifier to report 

confidence in its ability to correctly classify an object (7).  Due to the assumed 

distribution of targets and non-targets, certain objects detected by the CS are difficult to 

classify, i.e. the given score of a detected object lies close to the decision threshold 

between the target and non-target distributions.  These objects are then rejected until 

further measurements that lead to a more definite classification can be made or these 

objects may be transferred to a second stage classifying system designed to deal with 

objects that require finer classification precision (7).  A loss function can be defined as 

the loss incurred by making decision l if the true class is k (out of K classes) (7).  If every 

misclassification is equally serious, then the loss function is given by: 
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where k = 1,…,K and l∈{1,…,K} is a reasonable choice.  The total risk for the optimal 

decision rule is called the Bayes’ risk (R) and is defined by 
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R = pMC + d ⋅ pd    (2.28) 

where pMC is the probability of misclassification, pd is the probability of doubt, and d is 

the rejection threshold, or the cost of being in doubt (7).  Error-reject curves are the plot 

of pMC versus pd (7).  These curves are particularly useful is describing the relationship 

between making a classification error and the doubt associated with a classification 

decision.  Since the slope of the error-reject tradeoff curve is the value of the rejection 

threshold, the tradeoff is most effective for low levels of rejection and becomes less 

effective for high levels of rejection when the error rate is very low (7).   Figure 2.16 

provides an example of an error-reject curve. 

 

Figure 2.16  Error-Reject Tradeoff Curve. 

 

          2.3.2.4  Error Histograms.   

     For classifiers with several outputs or in situations where the size of the errors is more 

important than their type, an error histogram provides another quick method for 

visualizing the distribution of errors.  An error histogram shows the count of the 
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frequency with which a classification error falls within a set of bandwidths, i.e. within a 

certain range of error sizes.  These bandwidths or error sizes are the ranges of possible 

differences between the actual target class and the predicted class for each exemplar.  For 

a classification probability score from zero to one, these bands must be split into a small 

set of bins.  This error binning technique contrasts the setting of class thresholds used to 

classify the exemplars and generate the confusion matrix.  For a simple two-class 

confusion matrix, if the predicted classification score for a particular exemplar exceeds 

some preset threshold, then that exemplar is classified as class 2.  For the error histogram, 

the difference between a given exemplar’s predicted classification probability and each 

target output class probability is used.  A healthy classifier will show a peak at zero, 

quickly falling off as the number of errors of greater magnitude diminishes.  For a data 

set with normally distributed noise, the error histogram should have the appearance of a 

normal distribution.  Figure 2.17 shows an example of the error histogram of a healthy 

classifier.  The error histograms of competing classifiers can be examined to identify 

differences in the performance of multiple CSs or deficiencies in a single CS.  
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Figure 2.17  Error Histogram Example. 

 

          2.3.2.5  Classification Trees.   

     In biomedical decision-making scenarios, classification trees are used to aid the 

diagnosis between diseased and healthy patients (5).  Often this technique combines 

information from one or more diagnostic tests with patient characteristics to better 

identify patients with the disease of interest (5).  Another advantage of this technique is 

that the leaves of a classification tree provide enough data for ROC curve generation (5).  

This technique could be applied to the various questions raised in DUSD-BM evaluation.  

For instance, the selection of a superior ATR CS by allowing questions to systematically 

rank the performance of a CS or “weed out” an inferior CS that does not meet AFRL/SN 

performance requirements.  The following simplistic scenario uses a classification tree to 

identify a superior CS.   

     Suppose that for a combat identification (CID) scenario, AFRL/SN requires a pID of 

0.87 and a pFA of 0.2.  Since each CS can presumably achieve these values dependent 

upon their detection threshold value setting, the best way to compare the CSs is to 
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compare the other metric at a specific performance measure criterion.  For instance, if the 

most important performance measure for a CID scenario is pFA then the selection should 

be based on the superior pID at the required pFA level.  The objective of the decision is to 

determine which two ATR CSs should be chosen for further competition and 

improvement.  The CSs competing for contract selection, along with their performance 

measures, are listed in Table 2.5.  Notice that the performance measures of each CS 

indicate that no dominant CS exists for consideration.  Therefore, the decision maker 

must weight the preferences. Pertinent questions from the decision maker’s perspective, 

and implied by the rules of the program, are ranked by importance and used in the 

classification tree.  The questions for this simplistic scenario are given in Table 2.6.  The 

first two questions attempt to divide the CSs on the CID requirements.  The final question 

separates the CSs on overall performance.  Figure 2.18 provides a depiction of the 

classification tree and the results.  The ATR CSs are rank-ordered from right to left.  

Thus, the CS performance ranking in descending order is 4,2,1,3. 

 

Table 2.5  ATR CS Performance Measures for Competitive Selection Scenario. 

ATR pID (Rank) pFA (Rank) AUC (Rank) 
1 0.82 (3) 0.3 (4) 0.878 (4) 
2 0.87 (2) 0.18 (1) 0.823 (3) 
3 0.77 (4) 0.28 (3) 0.902 (1) 
4 0.93 (1) 0.25 (2) 0.899 (2) 
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Table 2.6  Rank-Ordered Questions for Competitive Selection Scenario. 

Number Question Metric 
1 Does the CS have a pID ≥ 0.80 @ the CID pFA requirement? pID 
2 Does the CS have a pFA ≤ 0.25 @ the CID pID requirement? pFA 
3 Does the ATR CS have a higher ROC AUC value than its 

competitor at this classification tree level? 
AUC 

 
 

Figure 2.18  Classification Tree for Competing ATR CS Selection Scenario. 

 

     Notice that in this scenario, the classification tree used is a slightly modified version 

of that used in biomedical decision-making.  The typical classification tree would 

implement only the right–hand-side of the tree depicted in Figure 2.18.  The above tree 

illustrates the ranking system for all CSs, but could have ended after the second question 

since two CSs are found superior to the others.  Finally, notice that the final question is a 

one that does not guarantee a single outcome.  The answer to this question could result in 
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multiple “no” responses.  A more complex decision could require further questions to 

rank and separate CSs below the third classification level.       

     2.3.3  Statistical Techniques.  

     Statistical techniques are particularly useful in performance measure comparison 

because they typically provide not only a structured method of comparison but also a 

level of certainty in the comparisons made.  The major drawbacks of using statistical 

methods are the reliance on the assumptions made about the data and the lack of 

confidence associated with a given comparison due to the lack of data.  The methods 

discussed here include statistical representations that are used to make inferences about 

comparisons (hypothesis testing), indicate differences between several competing 

systems (ROC curve performance measures and the multinomial selection procedure), 

evaluate multi-goal decision-making (linear goal programming), and employ decision 

analysis (DA) to decide amongst several competing classifiers.      

          2.3.3.1  Confidence Intervals.   

     The AFRL COMPASE Center uses confidence intervals to compare sensitivity of 

performance of several ATRs.  During ATR testing, a known target is presented in its 

most basic configuration.  This configuration represents the data on which the ATR CS 

was initially trained.  For example, if a T72 tank were used as the baseline target, the 

turret would be positioned straight ahead.  No external devices would be attached to the 

vehicle, and the tank would be positioned in the field clear of clutter and revetments.  The 

probabilistic performance measures, such as pD, for each individual ATR CS are 

computed for the baseline target.  The performance measures collected on each ATR CS 

serve as a benchmarking measure for the ATR’s performance at a nominal setting.  In 
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other words, an ATR CS’s detection and classification performance on the baseline target 

is considered to be in the optimal expected performance region for the CS.  Changes to 

the OCs are expected to degrade system performance, or, at best, remain unchanged.  

Performance measures from the remainder of the test, where the OCs are varied, are 

calculated and subtracted from the baseline performance measures to create a deviational 

(delta) performance measure.  Confidence intervals are constructed around the 

deviational and baseline performance measures.  The confidence intervals are then used 

to determine performance deviations from the benchmark performance measures.  Thus, 

each ATR CS is compared to its own “optimal” performance, and the deviational results 

are used to compare ATR CS’s across the board.  This technique does not use raw 

probabilistic performance data, such as pD, to compare various CSs.  Rather, a difference 

between baseline and deviated performance figure is used.  Figure 2.19 demonstrates how 

the confidence interval comparison results are presented.  Table 2.7 provides a sample 

chart of how the results are used for CS comparison.  In Table 2.7, all deviations are 

considered degradations.  In other words, the inclusion of OC variation introduced a 

degraded ATR CS performance.     
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Figure 2.19  Demonstration of Confidence Interval Use in ATR Comparison (56). 

 

Table 2.7  Example ATR CS Comparison Using Confidence Intervals (56). 

 
 
 
     A limitation of this technique is that the differences in the benchmark performance for 

each ATR CS are not given.  Therefore, a CS may perform poorly on the baseline target 

while every other CS performs well.  The poor performer may have similar deviational 

scores, but the deviation values are from a lower performance.  Thus, the CS should not 

be considered for comparison between the other CSs.  Figure 2.20 illustrates this 

Baseline Delta
LEGEND

Level 1 - The Confidence Intervals overlap Not 
confident that the OC affected Performance

Level 2 - The Confidence Intervals are separate 
Confident that the OC affected Performance

Level 3 - The Confidence Intervals are separated by the 
width of one CI the OC is an especially strong factor
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width of one CI the OC is an especially strong factor
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Target 2 Hatches Open 0 -11 -12
4 Hatches Open -23 -23 -16
Turret @ 10 deg -9 0 -1
Turret @ 20 deg -12 -14 -2

10 deg Depression -3 0 -15
Sensor 20 deg Depression 0 -3 -22

Off Broadside Squint -13 -4 0
Shallow Revetment -35 -55 -27

Environment Deep Revetment -49 -65 -67
Rough Background -22 -34 -44
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OC Type Delta OC ATR 1 ATR 2 ATR 3
Version 0 0 -1

Serial Number -8 -5 -2
Fuel Drums On -12 -34 0

Target 2 Hatches Open 0 -11 -12
4 Hatches Open -23 -23 -16
Turret @ 10 deg -9 0 -1
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problem.  However, performance of CSs against the baseline is generally near perfect 

since the target is in the configuration upon which the ATR CS was trained.  Thus, all 

CSs are relatively equal when detecting and classifying the baseline target. 

      Higdon proposed improvements to the ATR evaluation process that would 

incorporate a factorial design rather than a one-at-a-time test design currently being used 

by the AFRL COMPASE Center (35).  Results from simulated data demonstrated that 

such a design offers more efficient identification of significant relationships between 

features, or OCs, and more accurate confidence interval estimation for performance 

measures (35).      

 

Figure 2.20  Graphical Depiction of Limitations when Using Confidence Intervals to  
                      Compare ATR CSs. 

 

 
          2.3.3.2  Hypothesis Testing.   

     Hypothesis testing can be used to determine if there is a statistically significant 

difference between the performance measures of two or more systems (41).  When 

OC Type Delta OC ATR 1 ATR 2
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Target 2 Hatches Open 0 -11
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Shallow Revetment -35 -55
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Deviation Table indicates that CSs perform 
well in comparison to each other

1 0.75 0.5
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ATR 1 ATR 2

Knowledge of baseline pD indicates
that ATR CS 1 is much better.
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Off Broadside Squint -13 -4
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Environment Deep Revetment -49 -65
Rough Background -22 -34
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Deviation Table indicates that CSs perform 
well in comparison to each other

1 0.75 0.5

Probability of Detection
for Version

ATR 1 ATR 2

Knowledge of baseline pD indicates
that ATR CS 1 is much better.
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comparing two CSs, one can decide in advance the number of trials for testing each 

system (non-sequential) or one can have the testing procedure decide on the fly 

(sequential) (7).   

     When using non-sequential testing to compare two CSs, one can compare the 

confidence intervals for some performance measure p for both systems, or the confidence 

interval for the difference in performance between the two systems can be computed.  For 

large n (n>30) and assuming equal sample sizes (n = n1 = n2), the difference interval can 

be calculated as: 

     
n

ppppZpp )ˆ1(ˆ)ˆ1(ˆ
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112
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±− −α     (2.29) 

with the associated test statistic: 
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Then the following hypothesis may be made: 

H0 : p1 ≥ p2     (2.31) 

HA : p1 < p2.     (2.32) 

     This technique is useful for comparing two CSs, but requires large sample sizes, 

especially for distinguishing between small differences in the performance measures of 

the two systems.  As before, the assumption that the probability p does not vary from trial 

to trial makes this technique inappropriate for use in some ATR applications.  However, 

Wald’s non-sequential testing procedure is a cleverly simple method for probability 

comparison, which allows for the variation of probabilities from trial to trial.  In 

comparing two ATR CSs, there are two possible outcomes, represented by 
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The results are arranged in pairs in the ordered observed, i.e. t=(η1,η2) where 1 and 2 

correspond to the two ATR CSs.  Thus, the number of observations where the first ATR 

CS correctly identified the ROI while the second CS did not, represented by (1,0), are 

denoted as t1.  The other outocme, denoted t2, is the opposite case (0,1).  Therefore, a 

hypothesis test may be generated using 

H0:  p ≥ 0.5      (2.34) 

HA: p < 0.5      (2.35) 

where p is the probability that any ordered pair (a,b) is equal to (0,1) and is given by 
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The test statistic for the equivalent hypothesis tests is simply the number t2 of observed 

ordered pairs (0,1).  The null hypothesis, that p1 is better than p2, is rejected only if, t2 ≥ T, 

where the value of T, for a given level of significance α, is given by the binomial 

distribution with p = 0.5: 
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where t = t1 + t2. 

     An extension of Wald’s procedure can be applied in a sequential hypothesis testing 

approach (7).  The Wald sequential test is based on the efficiencies of the two competing 

ATR CSs.  Efficiency is defined as 
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such that p is the true probability of success.  The relative superiority of a second CS over 

the first CS is measured by the ratio (u) of the efficiencies: 
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For the test, four parameters must be set, which reflect the precision required (u0, u1) and 

the tolerated risks (α,β).  Also, the test statistics and hypotheses are constructed as in 

Wald’s non-sequential test.  However, t2 is compared to two critical values: the 

acceptance and rejection numbers, given by 
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Rejection number:  
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If t2 falls below the acceptance number for any value of t, the null hypothesis that ATR 

CS1 is better than ATR CS2 is accepted.  If t2 exceeds the value for the rejection number, 

the null hypothesis is rejected and the conclusion is that ATR CS2 is better than ATR CS1.  

If t2 remains between these bounds, testing is continued.   

 The Wald sequential test procedure has been applied in comparing the pID 

performance measure for different configurations of the MSTAR system using actual 

data and in a four system comparison, with an embedded Wald sequential test 

methodology in a multiple sequential rejective Bonferroni procedure, using simulated 

data (15).  The results indicated an improved sample size savings advantage through the 
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use of the Wald procedure, which is of great benefit since image data collection is very 

expensive (15).       

          2.3.3.3  ROC Curve Performance Measures.   

     The most commonly used index for comparing ROC curves is the area beneath the 

ROC curve (AUC) (7,8,9).  This area is equivalent to the probability of success for a 

diagnostic system identifying both target and clutter images in a series of image pairs in 

which there is always a target and clutter image (27).  Again, the AUC measure 

represents a convenient and simple index of target detectability.  However, deficiencies in 

the AUC performance measure have pushed the search for better ways to compare ROC 

curves.  ROC analysts in the field of biostatistics discourage the use of AUC when the 

ROC curves for classification systems overlap or are mismatched (17,43).  The AUC 

measure has been shown to fail in the definition of being a true metric (7).  For example, 

two ROC curves may have different shapes, but have the same AUC value.  With respect 

to metric definition, this violates the definiteness property (7).   

     Several measures have been proposed as alternatives to the AUC measure.  First, the 

area under the binormal ROC, denoted Az, is the area under the ROC curve that is above 

the diagonal chance line (66).  Thus, Az ranges from 0.5 to 1.0 and provides a measure of 

how a diagnostic system performs in relation to chance.  This measure is “less affected by 

the location or spread of the points” that compose the ROC curve (66).  The Az measure 

assumes that the target and non-target distributions may be modeled with normal pdfs.  

Then, the ROC curve may be plotted on a binormal graph, where the ROC curve is linear.  

The result is an easily calculated area under the curve that does not underestimate the 

area under the ROC curve by using an approximation rule.  The AUC calculation method 



 

2-49 

for empirical data is typically computed using the trapezoidal rule, or some other 

approximation rule, on a linear probability scale thereby underestimating the true area 

under a complete ROC curve.  One can argue that the AUC measure is superior in that it 

makes no assumption concerning the underlying distribution of the ROC like the Az 

measure.  In the context of ATR evaluation, this method is of little use since no 

assumption is made concerning the underlying target and non-target distributions.  

     A proven metric, called the average metric distance, has been proposed for the 

comparison of multiple ROC curves associated with multiple CSs (7).  Since the area 

under the curve may be the same for two different ROC curves, this metric does not 

incorporate the idea of area under the ROC curve.  Rather, the metric measures the 

average metric distance between two ROC curves in order to estimate the difference in 

their respective AUC measurements.  The average metric distance metric can be 

approximated to range from 0 to 1, like the AUC measure, where 0 implies no difference 

between two ROC curves and 1 implies maximum difference between two ROC curves 

(7).  This discrete approximation is represented by: 
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for each 1 ≤ q < ∞.  For the above equations, ρ is the distance metric, q corresponds to 

the type of distance metric implemented, m is the number of thresholds evaluated, θ is the 

individual threshold value where each ROC curve is evaluated, and P(f) and P(g) represent 

the two ROC curve data sets.  The vectors xv and yr  correspond to the points of two ROC 

curves under comparison via the distance metric.  The average distance metric also 

allows the use of any available distance metric, such as the Euclidean or Manhattan 

metrics, which determines the distance between two points on two separate ROC curves 

(7).  Most importantly, each ROC curve can be compared against a known reference 

curve, such as the negative diagonal line.  Doing so corresponds directly to a difference 

comparison in the AUC measurement between classifiers.  Another strength of this 

metric lies in the fact that the distance measure is based upon the threshold placement, 

not the number of samples from the target and non-target distributions.  Finally, all 

calculations of this metric are perpendicular to the negative diagonal line, as seen in 

Figure 2.21, which illustrates the calculation of this ROC performance metric.  Note that 

the distance measure, di,j, depicted in the plot is based on the distance metric selected by 

the user.  In the plot, this same measure is shown at the 120th threshold for each CS and is 

based upon the Euclidean distance measurement. 

 



 

2-51 

Figure 2.21  Depiction of Average Metric Distance Metric Calculation. 

 

     A similar metric introduced in biostatistical research is that of the q-norm metric, 

which compares the distance between matched ROC curves (13).  The second method 

measures the distances based upon a line with a slope b = )/( nm−  where m and n are the 

number of samples taken from the target and non-target distributions.  Though this metric 

does not require that the same number of non-targets and targets be sampled, the use of 

differently sized target and non-target populations complicates this metric.  

     Consider a simple example of the average metric distance metric for comparing two 

separate ATR CSs.  The ROC curves for the CSs have been provided in Figure 2.22.  

Notice that CS2 seems to be the superior system, and, in fact, it is by design of the target 

distributions.  CS1 is based upon a N(3,2) target distribution, while CS2 is based upon a 

N(3,1) target distribution.  However, the ROC curves cross, which, by recommendations 
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from the biostatistical community, indicates that the use of the AUC measure is 

unreliable.  Using the Euclidean distance metric, an average metric distance measure may 

be calculated to compare each CS to the negative diagonal line.  The results are presented 

in Table 2.8.  For this example, the results indicate that CS2 is the better classifier, which 

we know to be true.    

 

Table 2.8  Comparison of AUC and Average Metric Distance Measures. 

Classifier AUC Avg Metric Dist 
(q=1) 

Avg Metric Dist 
(q=2) 

Avg Metric Dist 
(q=100) 

1 0.8850 0.2071 0.1464  0.1043 
2 0.9231 0.1797 0.1271 0.0905 

 

 

Figure 2.22  ROC Curves for Average Metric Distance Example. 
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     A final method of comparing ROC curves lies in the construction of confidence bands 

around the ROC curve.  Non-parametric confidence bands based on the Kolmogorov 

theory concerning distributions can be constructed about each point on an empirical ROC 

curve (13).  Thus, the (1-α) Kolmogorov-Smirnov (K-S) confidence band takes the form  

(Fm(t) - d, Fm(t) + d) on a ROC curve, where Fm(t) represents a realized target probability 

of detection value at threshold t and d is the half-length distance measure of the given 

confidence band.  Using Gm(t) and e to represent the non-target probability of false alarm 

value and confidence band half-length, the overall confidence rectangles about a single 

point on the ROC curve takes the form:  

P{ Fm(t) – d< Fm(t) < Fm(t) + d, Gm(t) – e < Gm(t) < Gm(t) + e} = (1-α)2 , (2.44) 

assuming the independence of the two distributions (13).  Thus, the collection of 

rectangles with width 2d and height 2e each centered at an observed point of the ROC 

curve has simultaneous coverage (1-α)2.  Note, this coverage is valid at all thresholds 

since the sensitivity and specificity are the same on the interval [ti, ti+1) as at ti.  The 

confidence statement about this collection of confidence rectangles is merely that, for all 

thresholds simultaneously, the theoretical values of (1-specificity) and sensitivity are in 

their associated rectangles with confidence (1-α)2.  Hypothetically, these bands could be 

used in similar fashion to confidence intervals about point estimates for the purposes of 

CS comparison.  The procedure for constructing these bands is as follows: 
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1.  Generate the empirical ROC curve by plotting the probability of false alarms  
     and probability of detection from the target and non-target distributions.   

 
2.  Construct the confidence rectangle about each point in the empirical ROC   
     curve.  Using the critical values for the K-S Goodness-of-Fit Test for a single   
     sample and a desired confidence level, α.  For observations greater than 40, the  
     formula K/√n is used to compute the confidence bands.  Let m refer to the  
     observations of the target distribution and n represent observations of the non- 
     target distribution. 

 
 

As an example of this procedure, a randomly selected set of targets (m = 200) generated 

from a Normal distribution (µ = 4, σ2 = 1.5) and non-targets (n = 200) generated from a 

Normal distribution (µ = 0, σ2 = 2), seen in Figure 2.23, are used to create an empirical 

ROC curve, shown in Figure 2.24.  

 

Figure 2.23  Empirical Data Set: Target~N(4,1.5) and Non-target~N(0,2). 

 

     A confidence rectangle is then constructed about each point in the ROC curve.  In this 

instance, the rectangle is a square due to the equal number of observations from each 

distribution, e.g. n = m = 200.  Thus, for α = 0.05, the half-length of each confidence 

rectangle is equal to d = e = 1.36/√m.  The resultant confidence bands can be seen in 

Figure 2.24. 
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Figure 2.24  ROC Curve and Associated K-S Confidence Rectangles (m=n=200). 

 

Figure 2.25 illustrates the change in size of the K-S confidence rectangles when the 

number of observations of the non-target population increases to 1000.  Note that the 

confidence rectangles have adjusted in width. 
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Figure 2.25  ROC Curve and Associated K-S Confidence Rectangles (n = 1000). 

 

         2.3.3.4  Multinomial Selection Procedure (MSP).   

     Multinomial selection procedures (MSPs) have only recently been applied to the 

evaluation of competing algorithms (4,5).  Multinomial selection problems involve the 

comparison of k classification systems across a given objective performance measure 

(8,9).  MSP may also compare k systems across n classes, rather than being limited to the 

target/non-target alternatives in the typical DUSD-BM scenario (8,9).  The objective of 

the MSP is to find the system, given a limited amount of data, which is most likely to be 
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     Consider an example of the MSP in the performance comparison between three 

notional CSs classifying a two-class data set of the classic XOR problem.  Each CS has 

been trained using the same data set, balanced between the two classes.  In this example, 

there are 250 data points (125 for Class 1 and 125 for Class 2) for training each classifier, 

and the same number of points for testing each classifier.  A plot of the data to be 

classified is given in Figure 2.26.  For this example, three classifiers are examined: a 

linear statistical classifier, a quadratic statistical classifier, and a multi-layer perceptron 

(MLP) artificial neural network classifier.  The idea is to use the classification results of 

the three different classifiers.  The classification accuracy and confusion matrix for each 

classifier is listed in Table 2.9.  Notice that though the linear classifier proves to be 

inferior, there is no clearly superior classification system.  This inability to distinguish 

between the classifiers leads to the use of the MSP for a better performance metric. 

     Procedure BEM (Bechhofer, Elmaghraby, and Morse) is a classical solution procedure 

for the MSP (12).  On the assumption that larger is better, BEM selects the system having 

the largest value of the performance measure in more replications than any other, as the 

best system.  Another necessary assumption is that for a multinomial distribution there is 

a constant probability of success over all test trials.  This assumption holds as long as the 

test trials are at random, and the probabilities of success obtained are still estimates of the 

probabilities of winning in any randomly selected trial (7).  A modified version of the 

BEM procedure is given below: 

1.  Given vj Class j test data points, compare estimated posterior Class j  
     probabilities for each classifier.  

 
2.  Select the best classifier for each data point as the classifier with the maximum  
     estimated posterior Class j probability. 
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3.  Compute the number of wins/successes Yi|j for each classifier i given Class j  
     data. 

 
4.  Let Y[1|j] ≤ Y[2|j] be the ranked number of successes from Step 3.  Select the  
     classifier associated with the largest count, Y[3|j], as the best for Class j. 

 

Using this technique, a point estimate can be computed for the conditional probability 

P(Ci|Φj) of each classifier Ci being the best given the class Φj using  

  s
j

ji
ji p

Y
CP ˆ)|( | ==Φ

ν
= PBEST BY CLASS.    (2.45) 

This is accomplished when the number of successes Yi|j for each classifier I given vj 

Class j test data points, is modeled as a single multinomial distribution.  The 

corresponding confidence intervals can be constructed using: 

n
pp

Zp ss
s

)ˆ1(ˆ
ˆ

2
1

−
±

−
α .     (2.46) 

The total probability that each classifier is the best according to the estimated posterior 

probabilities can be computed using the law of total probability: 

)()|()()|()( 2211 ΦΦ+ΦΦ= PCPPCPCP iii =PBEST OVERALL  (2.47) 

where P(Φj) are the prior probabilities for each class (in the example, these prior 

probabilities are equal to 0.5).  Tables 2.10 and 2.11 illustrate the use of the BEM 

procedure with the given classifiers for both Class 1 and Class 2 data, respectively.  Table 

2.12 provides the resultant confidence intervals (α = 0.05) around the PBEST point 

estimates of the BEM procedure for each classifier.  
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Figure 2.26  Testing Set of Two-Class XOR Data (250 Samples). 

 

Table 2.9  Confusion Matrices and Classification Accuracies for MSP Example. 

 Linear Classifier 
Classified As 

 Quadratic Classifier 
Classified As 

 MLP Classifier 
Classified As 

  C1 C2   C1 C2   C1 C2 
Actual C1 54 71  C1 113 12  C1 113 12 
(Truth) C2 64 61  C2 9 116  C2 11 114 

      
CA 0.460  0.916  0.908 

 

Table 2.10  BEM Procedure Illustrated for Class 1 XOR Data. 

Test Data Posterior Probabilities Win/Successes = 1 
Number Linear Quadratic MLP Linear Quadratic MLP 

1 0.7473    0.7229    0.3510 1 0 0 
2 0.3025     0.5257    0.8896 0 0 1 
3 0.6384     0.5819    0.1328 1 0 0 
… … … … … … … 
125 0.3652     0.4338    0.8673 0 1 0 

Linear Quadratic MLP   
Successes (Yj|1)= 4 
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Table 2.11  BEM Procedure Illustrated for Class 2 XOR Data. 

Test Data Posterior Probabilities Win/Successes = 1 
Number Linear Quadratic MLP Linear Quadratic MLP 

1 0.4512     0.8705    1.000 0 0 1 
2 0.6974     0.8442    1.000 0 0 1 
3 0.6724     0.9265    1.000 0 0 1 
… … … … … … … 
125 0.4489    0.9942    0.9489 1 0 0 

Linear Quadratic MLP   
Successes (Yj|1)= 3 

2.4% 
34 

27.2% 
88 

70.4% 
 

Table 2.12  Procedure BEM PBEST  Estimates and 95% Confidence Intervals for  
                        XOR Data. 

PBEST Linear Quadratic MLP 
Class 1 0.032 0.464 0.504 

CI [0.001 0.063] [0.377  0.551] [0.416  0.592] 
Class 2 0.024 0.272 0.704 

CI [0 0.051] [0.194  0.350] [0.624  0.784] 
Both Classes 0.028 0.368 0.604 

CI [0.000 0.029] [0.283  0.453] [0.518  0.690] 
 

     The results show that for classifying Class 1 data, the MPL and quadratic statistical 

classifier are similar, but when classifying Class 2 data, the MLP classifier is statistically 

the best classifier by using the MSP PBEST metric.  Finally, the confidence intervals 

indicate that the MLP classifier is the best overall system for classifying the given XOR 

data set.  Results from various pattern recognition problems have indicated that the MSP 

can be used to distinguish differences between CSs that other performance measures, 

such as AUC and CA, cannot (4,5).  
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          2.3.3.5  Linear Goal Programming (LGP).   

     Linear goal programming (LGP) is a constrained optimization technique used by 

decision-makers to solve multivariable, multigoal problems (2).  Many problems, such as 

comparison of ATR CSs, involve not only multiple objectives, but also multiple 

conflicting objectives (2).  All LGP models consist of three components: an objective 

function, goal constraints, and non-negativity requirements (2).  Differences from the 

typical linear programming model include the preemptive priority factors, deviational 

variables, and the concept of satisficing.  Preemptive priority factors (Pk) is a method 

whereby goals are ranked ordered, where P1 represents the most important goal and PK 

represents the least important goal of K goals.  Thus, the Pk are numeric values that 

represent the decision-maker’s goal priorities within the model.  Deviational variables, 

denoted di
- and di

+, express the deviation from a particular goal as the LGP is solved.  

Finally, the idea of satisficing implies that the LGP will seek a solution that satisfies as 

many goals as possible rather than optimizing a single goal (2).  Thus, proper goal 

selection is an important aspect to LGP formulation.   

     In LGP, there are three different types of objective functions and six different types of 

goal constraints.  Table 2.13 lists the different types of objective functions and their 

purposes.  Table 2.14 lists the different goal constraints and their uses.  LGP formulation 

involves the following six steps (2): 
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1.  Define the decision variables.  Clearly state what the unknown decision variables are.   
     In an ATR CS comparison application, this may be the various CSs that are being    
     subject to comparison.  

 
2.  State the goal constraints.  Identify the right-hand-side variables first paying attention  
     to the permissible deviation for each deviational variable. 

 
3.  Determine the preemptive priorities.  Rank the goals in accordance with the decision- 
     maker’s stated preference.  For CS comparison, this could be the mission scenario  
     or the desired performance measure to be maximized or minimized. 

 
4.  Determine the differential weights.  Examine preferences within a specific goal level.   
     For instance, a goal range may be given where any deviation outside of that range  
     affects the decision. 

 
5.  State the objective function.  Select the correct deviational variable for inclusion in  
     the objective function.  Ensure the that the deviational variables correspond to the  
     appropriate preemptive priority factor. 

 
6.  State the non-negativity requirements.   
 
 
 

Table 2.13  LGP Objective Functions. 
Objective Function Purpose 

Minimize Z = Σ (di
+ + di

-) 
for all I 

Used when deviational variables are not 
distinguished by priority or weighting 

Minimize Z = Σ Pk(di
+ + di

-) 
for all i   

for k = 1,2,…K 

Used when K goals are ranked by Pk priorities; 
Goals are ranked but deviational variables are 

of equal importance 
Minimize Z = Σ Pkwkl(dI

+ + di
-)  

for all i  
for k = 1,2,…K  
for l = 1,2,…,L 

Used when K goals are ranked by Pk priorities;  
Goals are ranked and deviational variables are 

weighted by the wkl differential weighting 
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Table 2.14  LGP Goal Constraint Types. 
 

Goal Constraint 
Deviational 
Variable in 
Objective 
Function 

 
Possible 

Deviation 

 
Unrestricted 
Deviations 

Desired Usage 
of  

Right Hand 
Side Value 

aij + di
- = bi dI

- Negative None Equal to bi 
aij - di

+ = bi dI
+ Positive None Equal to bi 

aij + di
- - di

+ = bi di
- Negative and 

Positive 
Positive bi or more 

aij + di
- - di

+ = bi di
+ Negative and 

Positive 
Negative bi or less 

aij + di
- - di

+ = bi di
- and di

+ Negative and 
Positive 

None Equal to bi 

aij  - di
+ = bi di

+ (artificial) None None Exactly bi 
 

     The following example illustrates how a LGP model can be used to compare between 

two ATR CSs.  Suppose the goal of comparison is to determine which CS is more 

suitable for a CID mission.  A CID mission requires a low probability of false alarm since 

the goal is to destroy known enemy targets.  The most important priority in the CID 

mission is to minimize the number of possibly civilian non-targets. Thus, the value of pFA 

in the objective function is appropriately weighted.  In fact, the decision maker has 

decided that this performance measure is 3 times more important than any other measure.  

A way to incorporate the other dimensions of performance for a CID mission is to 

include the deviations from pID, pCC, or pD in the objective function.  Minimizing pFA 

without doing so allows the LGP to select an ATR CS that may not detect anything.   The 

factors of CS cost, computational time, and other various measures, though not used in 

this example, could be incorporated into an expanded model. 

     Suppose that an ATR CS, denoted C1, has a pD = 0.560, a pFA = 0.440, a pCC = 0.762, 

and a pID = 0.833.  Further suppose that another ATR CS, C2, has a pD = 0.680, a pFA = 
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0.540, a pCC = 0.804, and a pID = 0.922.  Assuming that is the only available information 

concerning the two systems, the LGP formulation could be given as follows: 

 

Minimize  Z = 3( d1
+) + ( d2

-+ d3
-+ d4

-)    (2.48) 

subject to:   0.440x1 + 0.540x2 - d1
+ = 0      (pFA goal constraint)  (2.49) 

0.560x1 + 0.680x2 + d2
- = 1      (pD goal constraint)   (2.50) 

0.762x1 + 0.804x2 + d3
- = 1      (pCC goal constraint)  (2.51) 

0.833x1 + 0.922x2 + d4
- = 1      (pID goal constraint)   (2.52) 

  x1 + x2 = 1      (constraint which forces CS selection)  (2.53) 

x1, x2 ∈ {0,1}    (assignment constraint)   (2.54) 

  d1
-, d2

-, d3
-, d4

- ≥ 0  (non-negativity constraint)  (2.55) 

 
 

Notice that P1 equals 3 and P2 equals 1 since the pFA goal is three times as important as 

the other goals.  The three goal constraints associated with preemptive priority factor P2 

share the same preemptive priority factor due to the fact that they have no distinguishable 

priority over each other.  These values are gathered from discussions with the decision 

maker and may be arrived at through a value hierarchial analysis.  Also notice that the 

decision variables, x1 and x2, correspond to the two separate ATR CSs, C1 and C2.   

     The deviational variables, di
+ and di

-, represent the amount over or under the ith goal 

constraint when a particular ATR CS is chosen.  For instance, in the pFA goal constraint, 

the object is to have the lowest possible pFA while maintaining all other goals, if possible. 

Thus, the right-hand-side (RHS) of the pFA goal constraint is set to zero.  The lowest 

possible deviation (d1
+) above 0 is the ideal solution for that particular goal, which is 

evident in the minimization aspect of the objective function.  The opposite is true of the 

remaining deviational variables since the problem formulation attempts to minimize the 
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amount under 1, the RHS of the remaining goal constraints, which an ATR CS forces 

upon the solution.  As a final aspect to the problem, the decision-maker made no mention 

of an acceptable pFA.  Though an acceptable CS was chosen by the LGP solution, the CS 

itself may fall short of an overall mission requirement not mentioned in the problem 

description.  However, since such constraints are easily added to an LGP formulation, the 

burden of correctly formulating all requirements and constraints for a given LGP solution 

falls on the analyst.   

     The solution to this simplified problem is the selection of C1 as the appropriate CS for 

use in the given mission.  However, the objective function value is 2.17 for the selection 

of C1 and 2.21 for the selection of C2.  This very slight difference has no statistical 

significance for choosing one CS over the other.  Thus, C1 has a very slight advantage 

with its low pFA, but C2 almost overcomes its deficiencies in spite of the decision-maker’s 

preference for a low probability of false alarm.   

     For the typical ATR CS comparison scenario, the decision variables, which 

correspond to N CSs to be compared, are binary.  Thus, selection of C1 in the previous 

example results in x1 equal to 1 while not selecting C2 results in x2 equal to 0.  In other 

words, there is no way to choose x1 equal to 0.5 and x2 equal to 0.5 since only one CS can 

be used by an aerial platform during its mission.  One technique in LGP to use in this 

case is the branch and bound method for integer solutions (2). 

     One hindrance in using the single LGP formulation for the given scenario is that the 

performance measures of the ATR CSs are point estimates of the actual values.  Thus, 

confidence intervals may be constructed around the point estimates in order to estimate 

the variance in the point estimates.  For the scenario in question, assume that there are 75 
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known targets and 50 known confusers.  Thus, C1 correctly detected 42 of the 75 targets 

and incorrectly declared 22 of the 50 confusers.  C2, on the other hand, correctly detected 

51 of the 75 targets but incorrectly declared 27 of the 50 confusers.  From these results, it 

should be clear that C1 correctly classified 32 and correctly identified 35 of the 42 

detected targets.  Similarly, C2 correctly classified 41 and correctly identified 47 of the 51 

detected targets.  Using confidence intervals like those detailed in section 2.2.1.4, the 

95% confidence intervals are generated and presented in Table 2.15. 

 

Table 2.15  Point Estimates and 95% Confidence Intervals for LGP Example. 

 C1  C2 
Measure Lower 

Level 

Point 

Estimate 

Upper 

Level 

 Lower 

Level 

Point 

Estimate 

Upper 

Level 

PFA 0.302 0.440 0.578  0.402 0.540 0.678 
PD 0.448 0.560 0.672  0.574 0.680 0.786 
PCC 0.633 0.762 0.891  0.699 0.804 0.913 
PID 0.721 0.833 0.946  0.848 0.922 0.995 

 

     Having quantified the possible variance within each point estimate, it is evident that a 

single iteration of the LGP formulation will not suffice.  There are at least two 

approaches to assessing the variability within the given LGP formulation.  The first is to 

solve an LGP of each permutation of performance measures at the lower level, upper 

level, and mean values.  This results in 38 (6561) different LGP solutions.  Table 2.16 

lists the results from this approach.  From the results, it is clear that C1 is the superior 

system.   
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Table 2.16  LGP Results at Tri-Level Performance Measure Values (6561 Reps). 

Classifier Wins Percentage Mean Z 
C1 3500 0.5335 2.1647 
C2 3061 0.4665 2.2130 

 
 
 
     The second approach of comparing the two systems is to generate a Monte Carlo 

simulation of the point estimates of the probabilistic performance measures.  By using a 

random number generator, the point estimates are randomized and contain more variance 

than the previous method where the lower and upper bounds represented the greatest 

deviation from the point estimate.  The randomized estimates are then fed into the LGP 

formulation to produce an objective function value.  One benefit of this technique is that 

the number of replications performed is limited only by computational time and the 

random number generator used.  For the example, 10,000 replications were generated and 

each performance measure point estimate was distributed as a Normal distribution with a 

mean and variance based upon the data of Table 2.15.  The results, seen in Table 2.17, are 

very similar to the previous method.  The results indicate that C1 is a superior system, but 

with a smaller margin of difference.   

 

Table 2.17  Monte Carlo LGP Formulation Results (10,000 Reps). 

Classifier Wins Percentage Mean Z 
C1 5570 0.557 2.1664     
C2 4430 0.443 2.2151 

 
 
 

     The major advantages of the goal programming method are that all performance 

measures of an ATR CS could conceivably be incorporated into the LGP formulation of 
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CS comparison and that the decision-maker has control over the goal priority selection.  

Thus, each LGP formulation is tailored to the decision-maker’s objectives and uses the 

greatest amount of information possible to influence a decision.  Another benefit to LGP 

is the ability to quantify a system’s inability to meet a given desired performance level.  

The LGP can be formulated to reflect whether or not a given ATR CS can even meet the 

desired performance levels.  

     The disadvantages of the multiple replication techniques hinge upon the large amount 

of computational time, but more importantly, the reliance upon the initial point estimates 

used in the LGP formulation.  The point estimates used when building these comparisons 

should be well defined.  In other words, the performance measure point estimates must be 

based upon a reasonable number of replications that allow an analyst to make 

assumptions concerning the distribution of the performance measure.  Without this, the 

utility of the Monte Carlo and parameter levels (mean, upper bound, lower bound) 

comparison techniques are somewhat limited despite the large number of replications in 

each. 

     Overall, the LGP formulation depends on the preferences of the decision-maker.  Each 

parameter used within the LGP must make sense to the decision-maker for use in 

addressing the ultimate goals of the decision to be made.  Thus, if the LGP method does 

not mirror the objectives listed in the decision-maker’s fundamental objective hierarchy, 

then the results will be rather useless.  For instance, if a decision-maker’s objective is to 

find the classifier which best detects the targets in a SAR image, then the probability of 

detection should most likely be the performance measure which is weighted most heavily 

in the calculations. 
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          2.3.3.6  Decision Analysis (DA).   

     Since decisions are at the heart of ATR evaluation, a review of decision analysis (DA) 

methods and techniques is fitting.  The deficiencies in current techniques for comparing 

performance measures in ATR CSs are well known (7).  For instance, the direct 

comparison of probability performance measures is generally inadequate as these metrics 

provide information for only one decision threshold.  The AUC ROC performance 

measure solves this problem, but has been shown to be unreliable in the comparison of 

very similar systems (7,17,36,43,46).  In the biomedical analysis community, it is 

considered bad practice to compare the AUC for ROC curves that overlap (17,43).  The 

AUC for two CSs may be significantly different, but the implementation of the CSs may 

provide similar risk/benefit results and vice versa (17,46).  A DA approach could allow a 

decision-maker to quantify the risks and benefits of using two separate ATR CSs, 

compare the expected performance, and make the appropriate decision. 

     The field of decision analysis focuses on decisions where preferences and 

uncertainties need to be modeled.  The concept is to present a decision maker with a list 

of alternatives and their expected impact from which he or she may make a more 

informed decision (19).  The decision maker provides input as to the risks that he or she 

is willing to accept and anxious to avoid by indicating outcome preferences.  The benefits 

and drawbacks of each alternative are modeled in order to describe the problem at hand.  

Finally, the decision maker along with experts associated with the problem may provide 

insight into the uncertainties involved with making a decision, which are also modeled 

within the problem formulation.  Thus, subjective judgments may be included in the 

formulation of a DA approach to decision making.  While the incorporation of personal 
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judgments is necessary, these judgments should not be considered perfect.  Personal 

insights on uncertainty and system performance value can be misleading or limited (19).  

Therefore, DA techniques must be applied with care. 

     The concept behind DA is to use the known information about the problem at hand, 

provide expert opinion or standards to the uncertainty in the problem, and quantify the 

value of making a particular decision.  The DA process as a whole begins with a 

description of the problem.  Once the appropriate problem has been identified, the 

objectives and alternatives within the problem must be identified.  The next step is to 

decompose the problem into the structure of the decision, measure the unknown elements 

of the problem, and obtain the preferences or restrictions of the decision maker (19).  

When these elements of model formulation are complete, the best alternative should be 

selected.  Sensitivity analysis may then be performed on the decision to determine if 

small changes in the aspects of the model result in large changes in the outcome of the 

decision or even change the optimal decision.  If so, the decision maker may wish to 

reevaluate his or her decision.  If analysis indicates that the decision should be changed or 

more alternatives should be examined, then the modeling process begins again (19).  

Figure 2.27 depicts the DA cycle. 
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Figure 2.27  Decision Analysis Process Flow Chart (19). 

 

     Modeling the problem is an important step that may immediately help a decision 

maker.  Influence diagrams provide a graphical approach to capturing each element that 

has an impact upon the decisions to be made or is impacted by the decisions after they are 

made.  Shapes within the influence diagram, or nodes, model the decisions, chance 

events, and value of outcomes (19).  In the influence diagram context, decisions are 

represented by squares, ovals represent problem uncertainty, and rectangles with rounded 

corners depict values.  Arrows, or arcs, indicate the relationship between the given nodes.  

As an example, suppose that a decision maker with an ample amount of capital must 

decide whether or not to invest in an emerging technology.  The decision depends upon 

the future success of the given technology.  If the decision maker invests and the venture 

succeeds, the result is a large monetary return.  If the venture fails, then the investor loses 

all of his capital.  The decision maker could also choose not to invest and merely keep the 

capital.  Figure 2.28 illustrates a simple influence diagram for the decision of whether or 

not to invest in a new technology.   
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Figure 2.28  Influence Diagram of New Technology Decision Problem (19). 

 

     Decision trees are a popular method of modeling the problem by portraying the 

structure of the decisions, events, and uncertainties.  Decision nodes, represented by 

squares, indicate where decisions are to be made within the problem.  Uncertainty nodes, 

depicted by circles, represent the unknown factors that impact the problem, such as 

events that may happen following a decision (19).  The events branching from an 
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investment of $2M the possible investment return would be $10M if the venture 

succeeds.  Experts expect that the technology has a 40% chance of being successful.  This 

information can be entered into the form of a decision tree.  Figure 2.29 depicts a 

simplistic decision tree for the decision maker deciding whether or not to invest in a new 

technology.     

 

Figure 2.29  Decision Tree Representation of New Technology Decision Problem. 
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problems.  However, the decision should not be to use one over the other since they are 

isomorphic.  In other words, a decision tree can be constructed from a well- built 

influence diagram and vice versa (19).   

     Modeling uncertainty can be a very difficult task.  Quantifying a person’s feelings or 

beliefs about an uncertain aspect of a problem requires a degree of precision to make the 

solution useful.  The primary method of modeling chance events in a DA model is 

through the use of probability (19).  Since events preceding or following a decision may 

or may not happen with a certain probability, it is possible to model these events through 

probability models.  These probability models may be based upon known probability 

density functions, such as the normal or exponential functions, subjective probability 

estimation, historical data, or through data generated from Monte Carlo simulations. 

     Modeling the decision maker’s preferences is important in that almost every decision 

involves a trade-off.  It is possible to model a decision maker’s risk policy by developing 

a decision utility function.  While a decision may be made based upon the optimal 

expected outcome, a different alternative on the same decision may be made based on 

other factors associated with the decision (19).  For instance, consider the game proposed 

in Figure 2.30 where a player has the option to play one of two games (G1 and G2) that 

offer differing expected values over the long run.  In both games, the player flips a fair 

coin.  In G1, if the result is “heads” the player wins $30, while the player must pay $1 if 

“tails” is the outcome.  The expected long run value of G1 is $14.50.  G2, however, pays 

the player $2000 for “heads”, but requires a payment of $1900 for a “tails” result.  The 

expected value for G2 is $50, which is superior to G1 over the long run.  Under ordinary 

decision rules, the player would choose G2 to player in order to gain more winnings in the 
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long run.  However, the decision dynamics change if each game could only be played 

once.  In this case, the range of possible outcomes drives the decision.  The best case is 

for the player to choose G2 and win $2000.  However, in playing G2, the player risks 

losing $1900.  Most people would choose playing G1 and risking only $1 with the 

possibility of winning $30 instead of risking such a large amount of money in a game of 

chance (19).  Thus, this situation implies that a decision maker must incorporate a risk 

policy into the formulation of the problem model.  This can be accomplished through the 

use of preference modeling.  

 

Figure 2.30  Risk Gaming Example. 
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of person may elect to play one round of G2.  The chance of winning $2000 outweighs 

the risk of losing $1900 in a risk-seeker’s mind.  A risk-averse individual attempts to 

avoid risk.  This type of person may stick with G1 in the long run to avoid the loss of 

$1900 in a single coin flip.  A risk-neutral person ignores the effect of risk in a decision.  

For this individual, maximizing the expected value of a decision is the same as 

maximizing the expected utility of the same decision (19).  Figure 2.31 illustrates the 

shape of a utility function for the risk-seeking, the risk-averse, and the risk-neutral. 

 

Figure 2.31  Three Different Shapes for Utility Functions (19). 
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value on the outcome of a decision can be very difficult, especially if human life is 

involved.  Finally, the use of DA techniques does not guarantee a good decision.  The 

purpose of DA is to provide an informed decision that is based on the expected return 

(19). 
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III.  A Decision Analysis-Based Automatic Target Recognition Evaluation 
Methodology 

 
 
 
3.1  Overview 
 
 
     The goal of this research is to create a credible, defensible method for making 

decisions concerning ATR technology development while using all of the pertinent 

measures of performance (MOPs) and measures of effectiveness (MOEs), including all of 

the interested parties, and incorporating the preferences and values of the decision-

makers.  In regards to the interested parties, the role of the ATR evaluator is to oversee 

ATR evaluation at the research and development level, but the evaluator may or may not 

be an expert on what performance levels a fielded ATR system may require.  The 

warfighter, on the other hand, will ultimately use the ATR end product in an operational 

environment and should understand the impact of ATR operational effectiveness, but 

may or may not fully understand the intricacies of ATR performance assessment, 

particularly during the testing phase.  Thus, the concept is to construct two separate 

decision analysis frameworks: one for the ATR evaluator and one for the warfighter.  The 

end product of each framework will be a value score for each ATR system.  These scores 

may then be analyzed for use in decision-making.  Figure 3.1 illustrates the approach of 

translating ATR CS MOPs into a single value score from both perspectives. 
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Figure 3.1  Overall MOP Translation Methodology. 

 
  
     The objective of this research is to define an evaluation methodology.  Though care 

was taken with scenario creation and sensor instantiation, the combat models used in this 

research do have noted limitations.    

     This chapter is organized as follows.  First, an analysis of alternatives approach, as 

endorsed by the United States Air Force, is reviewed.  A summary of the ATR evaluator 

decision framework construction is given, which includes example results using data 

from the MSTAR program.  Next, a process for translating ATR MOPs into operational 

MOEs is introduced, followed by an overview of the Extended Air Defense Simulation 

(EADSIM) combat model.  Finally, a description of the warfighters’ decision analysis 

framework is presented. 
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3.2  Analysis of Alternatives 
 
 
     3.2.1  Overview.   

     The following section serves as a review of the “basic elements and practices” of 

analysis, particularly within the United States Air Force (24).  Good analytical practices 

can be standardized to a large extent (24).  The following elements of analysis provided 

the roadmap to the ensuing research and emphasize the importance of tailoring the 

methodology to meet the goal.  Therefore, subsequent use of this ATR evaluation 

methodology should include a detailed study into the following elements before 

application. 

     3.2.2  Goals.   

     The ultimate goal of ATR technology development is to provide a useful ATR system 

to the end users.  The idea is to develop an ATR system, or a set of ATR systems, that 

performs better than any other and employ that system in an operational environment.  If 

the technology is well-developed, the ATR system will decrease the time required for a 

warfighter to make particular decisions by condensing the immense amount of 

information that must be processed before a decision is made (42).  Thus, the real-time 

battlefield decision process may be shortened, and battlefield management resources may 

be applied towards other activities (42).  The goal must include the impact of military 

worth.  Military worth may be summarized through the use of six different attributes: 

Time to achieve objective, Targets placed at risk, Targets negated (killed), Level of 

collateral damage, Friendly survivors, and Resources required (24).  The alternatives, i.e. 
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each ATR CS being compared, may then be subjected to a cost versus effectiveness 

analysis.   

     3.2.3  Tasks.  

     Tasks are the means by which goals are achieved.  The delineation of these tasks is the 

responsibility of the decision-maker.  These tasks may change as the scenario, i.e. the 

operational environment, changes.  Thus, it is important to either construct a 

methodology that is robust for all possible scenarios or to clearly state the different 

scenarios (tasks) with which the results may be associated.    

     3.2.4 MOEs and MOPs.   

     The practicality of the DA models described below depends on the accuracy and 

acceptance of the associated MOPs and MOEs.  As defined by the Office of Aerospace 

Studies, MOEs are used in measuring proficiency in the performance of a task (24).  As 

useful guidelines, MOEs should be associated with a single task, should not be strongly 

correlated with one another, and should typically be the raw number of an outcome or 

occurrence.  Additionally, cost is never an MOE (24).  MOPs are typically “a qualitative 

measure of a system characteristic chosen to enable calculation of one or more MOEs” 

(24).  Thus, MOPs are used as inputs to describe the system for which the MOEs will be 

used in the analysis of alternatives.   

     Most of the MOPs used in this research were established at the time of the MSTAR 

program.  However, MOPs do evolve as the ATR technologies change.  New approaches 

and capabilities to solving target recognition problems require new metrics for assessing 

ATR performance; thus, MOPs are not necessarily stable.  On the other hand, the goals 

for any given ATR technology should be.  Therefore, while a new ATR program may be 
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assessed with a different metric, i.e. the definition of PD changes, the objective of 

correctly identifying targets does not. 

 

3.3  ATR Evaluator Decision Analysis (DA) Model 
 
 
     3.3.1  Overview.  

     The following is a summary of the research captured in the Air Force Institute of 

Technology technical report entitled “Application of Decision Analysis to Automatic 

Target Recognition Programmatic Decisions” (40).  The research found within the 

technical report constitutes a joint dissertation research effort and serves as a feasibility 

study for influencing ATR programmatic decisions using decision analysis (DA) 

techniques from an ATR evaluator’s perspective (39).  The results of the study indicate 

that DA tools and techniques can be implemented to influence ATR technology 

programmatic decisions.  Figure 3.2 highlights the portion of the performance measure 

translation methodology being discussed. 
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Figure 3.2  Evaluator Portion of the MOP Translation Methodology. 
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associated with a high degree of confidence as to minimize the number of false alarms.  

The ISR employment profile is used when the primary objective of the ATR CS is to 

collect information for many potential targets, i.e., classification accuracy may be 

sacrificed for improved detection performance (40).  For the purposes of the research 

found in the technical report, each employment concept was considered separately.  In 

this research, the two are combined within a scenario and considered to be of equal 

importance.     

     3.3.3  Encoding the Value Hierarchy.   

     The intention of the research was to create a decision framework that applied to 

several different ATR technology programs, e.g. MSTAR, AGRI, NCTI, as well as to 

several different programmatic decision types, e.g. technology investment, transition, or 

competition.  Therefore, a wide variety of performance measures are incorporated into 

the decision analysis model.  Figure 3.2 provides a depiction of the resultant ATR 

Evaluator DA framework. 
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Figure 3.3   Value Hierarchy for Influencing ATR Evaluator Decisions. 

 

     The nodes and their associated numbers featured in Figure 3.2 indicate the weight, or 

value, that the evaluator places on the given objective, or area of performance. For 

instance, the Classification Ability node accounts for 11% of the total influence on the 

decision.  Within the Classification Ability performance area, the Classify by Type 

measure of performance constitutes 47.4% of the Classification Ability score while the 

Classify by Class measure comprises the remaining 52.6%.  The figure also indicates that 

the evaluator places the most value on the performance measures associated with the 

Robustness objective (20%), while the Cost objective is the least important (10%).  Table 

3.1 gives the total value attributable to each MOP.  This total possible value is calculated 

by multiplying the appropriate weights along each branch of the value hierarchy for a 

given MOP and represents the total value provided by the MOP were it at its maximum 
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value.  This provides insight into the relative importance of each individual MOP to the 

evaluator.  The individual MOPs are also ranked according to this total possible weight in 

Table 3.1. 

 

Table 3.1  Total Possible Value Attributable to Each MOP (Evaluator). 

Objective MOP Total 
Possible 
Weight 

Rank 

%∆ PD (TGT/NTGT) 0.0850 4 
%∆ PID (Type) 0.0550  8 

 
Robustness 

%∆ PCC (Class) 0.0600  6 
FAR|PD 0.0729  5 Detection 

Performance PFA|PD 0.0971  3 
Employment Concept Employment Rating 0.1500  1 
Declaration Ability PDEC 0.1300  2 

PID 0.0521   9 Classification 
Ability PCC 0.0579  7 

Development Money 0.0002  21-23 
Development Time 0.0002  21-23 

Development Expertise 0.0002  21-23 
Development Risk 0.0004  20 

Redeployment Money 0.0041  19 
Redeployment Time 0.0052  18 

Redeployment Expertise 0.0093  17 
Redeployment Risk 0.0104  16 

Use Money 0.0152  15 
Use Time 0.0305  13 

 
 
 
 
 

Cost 

Use Expertise 0.0244  14 
ES-PD 0.0466  10-12 
ES-PCC 0.0466  10-12 

Self-Assessment 
Accuracy 

ES-PID 0.0466  10-12 
 
 
 
     The value hierarchy illustrates how ATR system measures of performance influence 

programmatic decisions.  For this example, the weights were elicited for a competition 

decision between three different ATR CSs.  In fact, the framework could be used to 
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influence any number of decisions made by the ATR evaluator, but the corresponding 

weights on the various nodes would most likely be different (40).  This points to the 

flexibility of the decision analysis approach, but also hints at the time consumption 

associated with the value elicitation of the decision framework construction.  MOPs are 

introduced to the DA framework to produce a single value score.  This score incorporates 

the preference structure of the decision-maker.  Thus, the subjective preferences of the 

decision-maker are quantified and then translated into a single score, which may be 

evaluated objectively.    

     3.3.4  Results Using MSTAR Data.  

     Since the ATR evaluator data served as a feasibility study, real world data was applied 

to the model.  The performance characteristics of three different ATR systems, labeled A, 

B, and C, were introduced to the evaluator’s model.  From discussions with the SME, it 

was clear that ATR B was considered to be the superior system performance-wise.  The 

following tables and figures provide the results of the data being introduced to the DA 

framework. 
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Figure 3.4  Plot of ATR Value Under Certainty. 

Figure 3.5  Plot of ATR Value Under Uncertainty. 
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Figure 3.6  Plot of ATR Utility Under Uncertainty. 
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performance assessments given by the ATR evaluators involved in the testing.  The 

results allow a graphical comparison and provide insight into the measurable differences 

between the ATR CSs.  

 

Table 3.2  ATR CS Expected Value and Expected Utility Results. 

  ATR A ATR B ATR C 
CID 0.509 0.537 0.525 Value  

(Certainty) ISR 0.497 0.531 0.497 
CID 0.509 0.556 0.525 Value  

(Uncertainty) ISR 0.497 0.531 0.497 
CID 0.572 0.507 0.518 Utility  

(Uncertainty) ISR 0.414 0.455 0.439 
 

 
Table 3.3  Ranked ATR CS Alternatives by Expected Value and Utility. 

  ATR A ATR B ATR C 
CID 3 1 2 Value  

(Certainty) ISR 2 1 2 
CID 3 1 2 Value  

(Uncertainty) ISR 2 1 2 
CID 1 3 2 Utility  

(Uncertainty) ISR 3 1 2 
 
 
 
3.4  Process for Translating MOPs into MOEs  
 
 
     3.4.1  Overview.   

     While the ATR evaluator DA framework uses ATR MOPs as a direct input, the 

warfighter DA model requires MOEs for inputs into the value hierarchy.   Thus, two 

extra steps are required before the warfighter DA model can produce value scores.  First, 

ATR MOPs must be translated into operational results, via a combat model in this case.  
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Next, the combat model outputs must be slightly altered into the form of MOEs that are 

of interest to the warfighter.  For this research, EADSIM served as the combat model for 

its ability to accurately model ATR technology effects, its operational modeling level of 

detail, its acceptance throughout the armed forces simulation community, and its 

operating system diversity.  Figure 3.7 highlights the portion of the performance measure 

translation methodology being discussed. 

 

Figure 3.7  Combat Model Portion of the MOP Translation Methodology. 
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missile warfare, an integrated simulation tool to support joint and combined force 

operations, and a tool to augment exercises with realistic air defense training (67).  

EADSIM allows a user to explicitly model sensors and their interaction with objects 

within the battle space.  EADSIM was selected for its level of engagement detail, 

hardware platform diversity, and DoD acceptance.  For further validity, EADSIM was 

most recently selected to serve as the constructive model for the Targets Under Trees 

program (1).      

     Figure 3.8 depicts the EADSIM data and module architecture, which consists of three 

separate sections: the Simulation Setup, the Run-Time Models, and the Post-Simulation 

Analysis (68).  For routine use, EADSIM is comprised of three separate modules: 

Scenario Generation, Scenario Playback, and Post-Processing.  The Scenario Generation 

module allows a user to create a battle space, deploy forces, and select scenario execution 

preferences.  The Scenario Playback module allows the user to view the scenario results 

in two or three dimensions, highlight objects or actions of interest, and visually debug 

problems occurring within the execution of a scenario.  The Post-Processing module 

allows the user to select various engagement, detection, and communication statistics for 

analysis following scenario execution. 
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Figure 3.8 EADSIM Architecture (68). 

 

     3.4.3  EADSIM Scenario Construction.  

     EADSIM models battle space players at the system level.  An EADSIM user 

collectively associates various elements along with a ruleset to create a system.  Elements 

used by a particular system include airframes, weapons, communication devices, sensors, 

formations, and jammers.  The ruleset defines how the particular system will react with 

other systems and actions in the scenario.  Once an acceptable system is defined, the user 

deploys a system as a platform within a scenario.  Thus, a single ruleset and applicable 

elements within EADSIM are grouped together to define a system.  A platform is an 

instance of the particular system deployed within an EADSIM scenario.   A user can 

employ ground-based and airborne platforms easily within an EADSIM scenario.  
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Additionally, the deployed platforms may be specified as Friendly (Blue force) or Foe 

(Red force).  EADSIM scenarios consist of laydowns, which are specified collections of 

deployed platforms.  Differing platform formations or characteristics may be saved under 

different laydowns rather than creating an entirely new scenario.  Figure 3.9 depicts the 

relationship between elements, systems, platforms, laydowns, and scenarios in EADSIM.   

 

Figure 3.9  Graphical Explanation of EADSIM Scenario Construction. 
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the ground-based component to indicate how effectively the ground-based system hides 

from the airborne sensor, but were not for this study. 

     The scenario executes in the following manner.  A Blue ISR platform launches from a 

Blue airbase to detect ground targets in the immediate area, which is roughly 8100 km2.  

The ISR platform relays track information to a ground site, which transfers the 

information to the Ground Commander, or Air Operations Center (AOC).  The AOC then 

schedules air-to-ground fighters, using the ATR technology in the CID mode, for 

engagement against possible ground targets.  The fighters engage only if their own ATR 

assessment agrees with the ISR platform’s assessment at the Friend or Foe level.  Thus, if 

the ISR platform designates a Blue Tank to be hostile, the fighter will only expend a 

weapon if his own ATR assessment agrees that the target is hostile.    

     3.4.4  Assumptions.   

     As for the objects being modeled, a change necessary for EADSIM to accurately 

model the effects of an ATR CS in the scenario is the removal of Identification Friend or 

Foe (IFF) devices, which is a reasonable assumption for ground targets.  When a new 

target is detected, it is placed in the track file of the detecting system.  One of the first 

actions by the detecting system is to perform an IFF check.  If the IFF is working 

properly, there is no way for a sensor to misclassify a target.  To notice the effects of 

misclassification, the IFF was disabled on ground platforms.   Another correctable issue 

with EADSIM is the fact that Friendly ground-based units are not added to the track files.  

Therefore, all Friendly ground-based entities were created as Foes, but tagged as Friends 

during scenario generation.     
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     There are many different possible scenarios faced by the armed forces of the United 

States.  Whether it is a conventional attack or a peacekeeping mission, the warfighter 

must be ready.  Computation time and the sheer magnitude of possible scenarios prohibit 

the full study of this area.  Thus, a single scenario location and force mixture is used for 

all of the analysis contained in the research involving EADSIM.  There are a few 

assumptions made throughout the scenario.  The first major set of assumptions is the 

employment of ATR technologies within the scenario.  It is assumed that the ISR 

platform is using a mature ATR technology, orbits the battle space searching for targets, 

and passes track information to a ground commander for use in vectoring fighters to 

targets.  The fighters serve as the CID platform in the scenario.  Once tasked by a ground 

commander, they must detect the target with their onboard CID sensor before engaging.  

The ATR technologies on the aircraft are assumed to be the same ATR system operating 

at different PD levels.  These assumptions, though they disregard additional players 

within the scenario and do not accurately describe current operations, are fairly 

reasonable.  Analysis of the flow of information from the ISR platform to the CID 

fighters is not the main objective of this research. 

     Next, within the scenario, engagements are limited to friendly air-to-ground strikes in 

order to gather battlefield effects based solely on the implementation of ATR systems.  It 

is assumed that enemy aircraft do not attack friendly air forces while they are detecting, 

classifying, or attacking targets.  The underlying assumption is that Friendly forces have 

achieved air superiority or are providing adequate air protection during sorties.  This 

assumption allows for analysis of the direct effects of employing ATR technology within 



 

3-20 

the operational scenario.  If this assumption were not made, it would not be clear if 

employing ATR technologies enabled the destruction of enemy ground targets.   

     3.4.5  MOE Translation from Combat Model Outputs.   

     Executing the EADSIM scenario produces both a playback file and user-selected data 

files from which post-processing reports may be generated.  EADSIM provides the 

number of systems destroyed, the number of weapons expended, and the number of 

remaining systems for friendly, hostile and neutral forces.  EADSIM also tracks the 

length of the conflict and records when each detection, engagement, success, and failure 

occurs.  EADSIM post-processing reports may be tailored to capture events or specific 

platforms of interest. 

     The combat outputs must be translated for application to the warfighter DA model.  

Table 3.4 lists the MOEs used by the warfighter DA framework and the EADSIM outputs 

used to generate them.   
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Table 3.4  Warfighter DA Model MOEs and Associated EADSIM Outputs. 

Objective MOE EADSIM Output Utilized 
% of Bombs Left Engagement Report Analysis

% of Mass Destruction Left Engagement Report Analysis
% of CMs & S/S Left Success Category 

Minimize  
Hostile  

Weapons 
% of S/A & A/A Left Engagement Report Analysis

% of Systems Left Success Category 
% of Personnel Left Engagement Report Analysis

Minimize Hostile 
Warfighting  

Systems % of C2 Left Success Category 
Length of Battle Determined by Scenario or 

GA: Scramble 
# of Civilians Killed Engagement Report Analysis

# of Civilian Structures Destroyed Success Category 

 
Minimize  

‘Bad Press’ 

# of Fratricide Incidents Engagement Report Analysis
% of Systems Left Success Category 

% of Personnel Left Engagement Report Analysis
Maximize 
Friendly  
Weapons 

Remaining 
% of C2 Left Success Category 

% of Precision Bombs Left Weapons Category &  
GA: Scramble 

% of Dumb Bombs Left Weapons Category &  
GA: Scramble 

% of CMs & S/S Left Engagement Report Analysis

Maximize 
Friendly 

Warfighting  
Systems 

Remaining 
% of S/A & A/A Left Engagement Report Analysis

    
 
 

     The Length of Battle MOE is implicitly calculated as a simulation runtime is 

established during EADSIM scenario creation.  Since no other means of halting EADSIM 

model execution exists, the Length of Battle MOE must be calculated in a different, but 

reasonable, manner or conceded.  A possible way to account for the length of time is to 

run the model for a small segment, say one day, and apply the results of the smaller 

segment to that of a longer segment, i.e. one week.  Another method would be to mark 

the time when a certain status is reached within the scenario.  For instance, the Length of 

Battle time could refer to when the friendly forces destroy at least 50% of the hostile 

forces.  The limitations of this second method are that the result fixes the level of another 
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MOE (in this case, % of Hostile Systems Remaining), and there are no guarantees that the 

fixed MOE will meet a predefined level throughout the scenario.  Finally, this MOE 

could be held standard across all ATR CSs being evaluated.  The method for calculating 

Length of Battle ultimately depends on the preferences of the analyst translating the 

MOEs and should be explained when presenting the value scores of the warfighter.  For 

the purposes of this study, the Length of Battle MOE was assumed to be proportional to 

the number of sorties accomplished in the given time frame.  This method rewards ATR 

CSs that do not send out fighters against friendly and neutral targets, but penalizes ATR 

CSs that send many fighters out in the hopes of destroying enemy targets.  It is arguable 

whether or not more sorties increase the length of the battle as more sorties may weaken 

the enemy’s resistance, thereby shortening the war.  However, more sorties may also 

result in more civilian casualties, which may bring more parties into the conflict or cut 

allied forces involvement. 

     To calculate the number of personnel and the number of weapons remaining, it is 

necessary to make assumptions concerning how many are associated with each weapon 

system.  For the given weapon systems in the EADSIM scenario, personnel and weapon 

amounts were estimated using data from Operation Desert Storm (64).  Thus, when a 

ground target is destroyed, it is assumed that a given amount of ammunition and 

personnel are destroyed as well. 

 

 

 

 



 

3-23 

3.5  Warfighter Decision Analysis (DA) Model 
 
 
     3.5.1  Overview.   

     The warfighter DA model actually uses a subset of the MOPs utilized by the 

evaluators’ DA model, as seen in Figure 3.10.  Thus, no aspect of ATR system cost or 

risk, as quantified by the ATR evaluator, is included.  The result is that the warfighter 

model ultimately depends solely on the performance characteristics of the ATR CS.  

Another important difference between the evaluator and the warfighter DA models is that 

the latter implicitly combines the effects of both employment concepts—ISR and CID, 

while the former treated them as two different entities.  Figure 3.11 highlights the portion 

of the performance measure translation methodology being discussed. 
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Figure 3.10  Description of MOP Differences Between Evaluator and Warfighter. 

 

Figure 3.11  Warfighter Portion of the MOP Translation Methodology. 
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     3.5.2  Decision Situation.  

     For the construction of the warfighter DA framework, an SME from ACC/DRSA 

refined an original framework developed in preparation for research discussion.  The 

individual defined tasks that directly supported the overall goal of a generic scenario that 

incorporates ATR technology: achieve the mission objective.  The goal is reached with 

the completion of required tasks defined by the SME.  These tasks also incorporate the 

aspects of military worth previously mentioned.  The proficiency of task completion is 

measured via the associated MOEs.  Figure 3.12 illustrates the flow from Goal to Tasks 

to MOEs.   

     3.5.3  Encoding the Value Hierarchy.   

     To begin the warfighter value hierarchy encoding, the SME also provided initial 

estimates for the value functions (59).  Ultimately, three additional individuals from 

ACC/DR contributed weights used to establish the decision-maker preference structure of 

the framework.  Each individual filled out a sample DA model framework, and the results 

were averaged to create a collective model (59).  The resultant value hierarchy is 

presented in Figure 3.12. 
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Figure 3.12  Warfighter DA Framework. 
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     Typically, inputs into a value hierarchy are of the same units, e.g. dollars, time, etc.  

However, in this case, the various MOEs do not share the same unit structure.  For 

instance, Length of Battle is measured in days while the majority of the MOEs are 

percentage measures.  This situation requires a value (utility) function to translate the raw 

MOEs into a space that makes the values compatible throughout the DA model.  The 

primary function of the value (utility) functions is to force the MOEs onto a 0 to 1 value 

(utility) scale for comparison sake.  For this process, the SME served as the decision-

maker for constructing value and utility functions for the MOE inputs (59).  Utility 

functions were based upon reaching an 80% solution relative to the value functions (59).  

Figures 3.13 and 3.14 illustrate the various value and utility curves employed within the 

warfighter’s DA model.  Due to the similarity in most of the value and utility functions, 

there will be a similarity in value and utility scores.  
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Figure 3.13  Value Functions for Warfighter DA Model. 
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Figure 3.14  Utility Functions for Warfighter DA Model. 

 

     Table 3.5 provides the total possible value attributable to each MOP.  The total 

possible value attributable is calculated by multiplying the appropriate weights along the 

value hierarchy for each individual MOE.  The total possible value represents the amount 

0 0.5 1
0

0.5

1
Bombs Rema ining

(0.5,0.5)

0 0.5 1
0

0.5

1
WMD Remaining

(0.5,0.25)

0 0.5 1
0

0.5

1
Cruise Ms l Re maining

(0.5,0.25)

0 0.5 1
0

0.5

1
A/A & S /A Remaining

(0.5,0.35)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile Systems Dama ged

(0.565,0.4)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile Pe rsonnel Destroyed

(0.5,0.5)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile C2 Destroye d

(0.565,0.4)

0 100 200
0

0.5

1
Length of Battle

(105,0.3)

0 100 200
0

0.5

1
# of Civilian Deaths

(115,0.2)

0 200
0

0.5

1
# of Neutral Objec ts Dama ged

(155,0.3)

0 10 20
0

0.5

1
# of Fra tricide Incide nts

(12,0.3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied Systems Re ma ining

(0.5,0.3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied Personnel Rema ining

(0.7,0.4)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied C2 Remaining

(0.6,0.4)

0 0.5 1
0

0.5

1
Dumb Bombs Re maining

(0.5,0.5)

0 0.5 1
0

0.5

1
Pre cision Bombs Re maining

(0.53,0.5)

0 0.5 1
0

0.5

1
Cruise Ms l Re maining

(0.53,0.5)

0 0.5 1
0

0.5

1
A/A & S /A Remaining

(0.6,0.5)

0 0.5 1
0

0.5

1
Bombs Rema ining

(0.5,0.5)

0 0.5 1
0

0.5

1
WMD Remaining

(0.5,0.25)

0 0.5 1
0

0.5

1
Cruise Ms l Re maining

(0.5,0.25)

0 0.5 1
0

0.5

1
A/A & S /A Remaining

(0.5,0.35)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile Systems Dama ged

(0.565,0.4)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile Pe rsonnel Destroyed

(0.5,0.5)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Hostile C2 Destroye d

(0.565,0.4)

0 100 200
0

0.5

1
Length of Battle

(105,0.3)

0 100 200
0

0.5

1
# of Civilian Deaths

(115,0.2)

0 200
0

0.5

1
# of Neutral Objec ts Dama ged

(155,0.3)

0 10 20
0

0.5

1
# of Fra tricide Incide nts

(12,0.3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied Systems Re ma ining

(0.5,0.3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied Personnel Rema ining

(0.7,0.4)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Allied C2 Remaining

(0.6,0.4)

0 0.5 1
0

0.5

1
Dumb Bombs Re maining

(0.5,0.5)

0 0.5 1
0

0.5

1
Pre cision Bombs Re maining

(0.53,0.5)

0 0.5 1
0

0.5

1
Cruise Ms l Re maining

(0.53,0.5)

0 0.5 1
0

0.5

1
A/A & S /A Remaining

(0.6,0.5)



 

3-30 

of value the MOE would contribute to the overall score were it at its maximum value.  

The MOEs are also ranked by their respective total possible weights in Table 3.5.  The 

results provide insight into the importance of each individual MOE.   

 

Table 3.5  Total Possible Value Attributable to Each MOE (Warfighter). 

Objective MOE Total 
Possible 
Value 

Rank

% of Bombs Left 0.0102  14 
% of Mass Destruction Left 0.0596  5 

% of CMs & S/S Left 0.0357  8 

Minimize  
Hostile  

Weapons 
% of S/A & A/A Left 0.0513  6 

% of Systems Left 0.2149  2 
% of Personnel Left 0.0682 4 

Minimize Hostile 
Warfighting  

Systems % of C2 Left 0.2977  1 
Length of Battle 0.0124  13 

# of Civilians Killed 0.0241  11 
# of Civilian Structures Destroyed 0.0134  12 

 
Minimize  

‘Bad Press’ 
# of Fratricide Incidents 0.0877  3 

% of Systems Left 0.0279  9-10 
% of Personnel Left 0.0457 7 

Maximize Friendly  
Weapons 

Remaining % of C2 Left 0.0279  9-10 
% of Dumb Bombs Left 0.0032  18 

% of Precision Bombs Left 0.0073  15 
% of CMs & S/S Left 0.0064  16-17

Maximize Friendly 
Warfighting  

Systems 
Remaining % of S/A & A/A Left 0.0064 16-17
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IV.   Application 
 
 
 

4.1  Overview   
 
 
     This chapter details how the proposed evaluation methodology could be applied to 

mature ATR technologies for influencing programmatic decisions or providing combat 

model analysis involving ATR technologies.  First, a combat scenario and performance 

characteristics for three different ATR systems are generated.  These MOPs are then 

applied to the ATR evaluator DA framework and produce a single value score for each 

ATR system.  Next, the performance characteristics are introduced to EADSIM, the 

combat model.  EADSIM results are then translated into MOEs.  The MOEs are then 

applied to the warfighter DA framework to produce a value score for each system.  

Finally, the two different value scores are analyzed within the decision analysis context. 

 
 
4.2  Scenario and Measures of Performance (MOPs) Generation   
 
 
     The following scenario considers three different, mature ATR systems for evaluation.  

The scenario involves an airborne ISR platform, multiple CID air-to-ground fighters, and 

various friendly, enemy, and neutral (FEN) ground targets.  The purpose of the airborne 

friendly units within the scenario is to detect all FEN targets while accurately 

distinguishing between those to be destroyed (enemy) and those to be avoided (friendly 

and neutral).  The objectives of the ISR platform are to detect as many potential targets as 

possible and relay the tracking information to the ground commander, who may vector 

air-to-ground fighters to the potential targets.  The objectives of the CID platforms 
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include responding to potential targets handed out by the ground commander, detecting 

the targets using its own sensor, and destroying the target if the original ISR classification 

is verified.   

     The definitions of the ISR and CID employment settings, summarized in Table 4.1, 

are based upon recommendations held by various ATR decision-making authorities.  The 

operating areas of the two different employment settings are marked along notional ROC 

curves in Figures 4.1 and 4.2.  To describe the process conceptually, ATR A will operate 

at an ISR and a CID level, each having an associated PD and PFA performance level that 

produces a ROC curve (Figure 4.1).  With a given PD setting, a PID and PFID level may be 

generated from a point on the PID ROC curve (Figure 4.2).  The definitions for PD, PFA, 

and PID presented in Section      2.2.3 are used.  The probability of false identification 

term, PFID, may be thought of as a false alarm measurement where the false alarms 

consist of all other non-type targets instead of clutter objects, or 

  ∑
−

− =
TypesNonAll

TypeFIDP Type)-Non|Type""P(D, ,       (4.1) 

such that 

                    ∑
−

− =
TypesNonAll

TypeFIDP Type)-Non|Type)P(D-NonD,|P(“Type”       (4.2) 

where D is the event of a target detection, and “Type” is the declaration of an ROI as a 

“Type” target.  In other words, when focusing on PID-MRLS, PFID-MRLS accounts for all 

Red_Tanks, Intel Trucks, Blue_Tanks, and Neutral trucks rather than clutter objects.   

     For this study, the overall PD and PID MOPs are decomposed into an individual 

measure for each of the five target types, i.e. PD-Type and PID-Type.  For example,  

PID-MRLS = P(D,”MRLS”|MRLS),        (4.3) 
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where D is the event of a target detection, and “MRLS” is the declaration of an ROI as a 

MRLS.  Hence, 

     PID-MRLS = P(“MRLS”|D,MRLS)P(D|MRLS).                       (4.4) 

The first term to the right of the equality is taken from the approximate identification 

ROC curve.  The second term is taken from the appropriate detection ROC curve.  In this 

study, a constant probability of detection is assumed for all target types. This method 

allows a higher input resolution when introducing the MOPs into a combat model.   

 

Table 4.1  ISR and CID Operational Definitions (5). 
Employment  

Settings 
Probability 
of Detection 

Probability of 
Identification 

Probability of 
False Alarm 

ISR PD > 0.9 PID > 0.7 Large 

CID PD  > 0.6 PID  > 0.95 Small 

 

Figure 4.1  Detection Performance Regions of ISR and CID Employment Settings. 
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Figure 4.2 Identification Performance Points of ISR and CID Employment Settings. 

 

     The ATR systems, labeled A, B, and C, have differing performance advantages and 

disadvantages.  The performance measures for each ATR system are generated using a 

Microsoft Excel® worksheet.  First, Gaussian target and non-target population densities 

are chosen to represent the possible objects to be found within the scene.  As described in 

Section      2.2.7, a distance measure, ∆m, represents the difference between the means of 

the two populations.  A spread ratio, s, represents the ratio of the standard deviation of 

the target population to the non-target population.  For generating MOPs to be used in 

this study, the spread ratios are all assumed to be one as the force mixture of the scenario 

would be unknown to the ATR developers.  These two measures are then used to 

construct continuous, binormal ROC curves and the associated performance data.  For 

example, using the performance data for ATR A and given an ISR PD-RED_TANK of 0.9 (the 

PD used for all target types in the ISR setting), the population density measures for the 
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Red Tank population, which corresponds to an enemy tank known to each ATR system, 

compared to other non-Red Tanks type targets has a distance measure of 1.43 and a 

spread ratio of 1.0, as seen in Table A.2.  The two measures correspond to PID-RED_TANK 

settings of 0.890 and 0.830 and PFID-RED_TANK of 0.123 and 0.318 when the PD-RED_TANK is 

set to 0.6 (CID) and 0.9 (ISR), respectively.  The data for each ATR and potential target 

can be found in Tables A.1 and A.2.  Figures 4.3, 4.4, and 4.5 depict the ISR and CID 

ROC curves for ATR systems A, B, and C.  Using the average AUC measure in Table 

A.2 to compare between the systems, it is unclear which is the best system as ATR A is 

the best CID system, while ATR B is the best ISR system.  It would seem that ATR C is 

the better performer at a CID setting while ATR B is the better performer when operating 

in an ISR mode when examining the overall averages of the PID, PCC, and PFA measures 

of the two different employment settings in Table A.1.  However, it is meaningless to 

examine the measures outside of their PD-PFA and PID-PFID relationships.  For example, 

an ATR CS could have a PID of 0.999, but it may occur when PFID also equals 0.999, 

which is a very undesirable performance level.  Also notice that the ISR and CID levels 

are set at the most liberal levels, i.e. PD is set to 0.6 and 0.9.  This provides a worst-case 

scenario for the combat model results in terms of PD.   
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Figure 4.3  ATR System A Performance Expressed Through ROC Curves. 

 

Figure 4.4  ATR System B Performance Expressed Through ROC Curves. 
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Figure 4.5  ATR System C Performance Expressed Through ROC Curves. 
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objects are detected), and the length of the battle (as there should be more total objects to 

evaluate and the proportion of detected enemy targets to the total number of detected 

targets shrinks).  Thus, for this study, no clutter, i.e. untrained, objects are considered 

within the combat models.  Instead, the PFID, which refers to simply non-type objects 

declared a different type rather than unknown objects declared as a certain type, is used 

within the combat models rather than the traditional PFA.  For instance, the PFID-MRLS 

measure considers the other four objects of interest (Red_Tank, Intel, Blue_Tank, and 

Neutral) to be non-targets.  This concept is visualized in Figure 4.6 using the MRLS 

population as an example.   

 

Figure 4.6  PID and PFID Calculation Concept for EADSIM Input. 

 

     Though not used within the combat models, the FAR of each ATR CS is used as an 

input to the Evaluator DA model.  The false alarm rates, which are optimistic, were 
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First, the ATR systems are assumed to be mature.  The false alarm performance of future 

ATR CSs is uncertain, but should always improve as ATR technology improves.  

Therefore, it is reasonable to assume that a mature ATR system may have such a FAR in 

the future.  Next, the map used for the scenario is focused around a desert.  In fact, a 

Kuwaiti map is used as the backdrop for the scenario.  In such an environment, the 

number of false alarms should be drastically reduced due to a low incidence of foliage 

and a low number of vehicles in the area.  Finally, it could be assumed that the ISR 

platform excludes detections outside a certain area of interest, i.e. the battlespace, which 

could dramatically reduce the impact of the FAR.    

     As an MOP input to EADSIM, PID is considered to be a given performance measure 

in response to a given PD level.  Thus, the PID, associated with a given PD and PFA, has 

been estimated by an ATR evaluator through testing.  The PID measure is pivotal when 

introducing ATR CS MOPs into EADSIM.  ATR performance measures are introduced 

into EADSIM in the following way.  First, a PD is defined for every target object within 

the scenario.  Additionally, a PD may be defined for each of the target types within 

EADSIM, as it was in this study.  Next, for each target type, a Non-Cooperative Target 

Recognition (NCTR) matrix is defined.  This matrix, which sums to one, details the 

probability that EADSIM is to declare a particular object (in truth) should it detect it 

within the area scanned by the radar system.  Using the example given in Table 4.2, the 

matrix represents the identification options for a Red_Tank.  Thus, if a sensor detects an 

object (known to be a Red_Tank object by EADSIM), the sensor has an 83% chance of 

correctly identifying the object as a Red_Tank.  Similarly, the sensor has a 17.7% chance 

of declaring the object as a Blue_Tank.  The PB, PR, and PU columns correspond to the 
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probabilities associated with declaring a target type as Blue (Friendly), Red (Enemy), or 

Unknown.  In this study, the target types are automatically associated with their correct 

FEN association to ensure that all Red targets are attacked, which is reasonable under the 

assumption that Red_Tanks are of a certain type, e.g. T-72, and Blue_Tanks are from 

another, e.g. M-1A1.  For example, if a tank-like object is detected and classified as a T-

72, there is no reason to conclude that the tank is friendly.  Thus, the probability of 

classifying an object identified as a Red_Tank as a Blue (Friendly) object is zero, which 

is the first entry in the matrix.    

 

Table 4.2  Example EADSIM NCTR Matrix for a Red_Tank Object. 

  To Be Classified As 
 Target Type PB PR PU 

RED_TANK 0.00 0.830 0.00 
MRLS 0.00 0.048 0.00 
INTEL 0.00 0.024 0.00 

BLUE_TANK 0.177 0.00 0.00 

 
To Be 

Identified As 

NEUTRAL 0.027 0.00 0.00 
 
 
     
     The robustness measures for the ATR CSs were randomly generated.  A random 

percentage value between five and twenty constitutes the degradation that the ATR CS 

encounters when moving from the ideal target profile to an altered one, i.e. from the 

nominal (trained) setting to a different (untrained) setting.  The assumption is also made 

that the Self-assessment capability is not used on these ATR systems.  Finally, the cost 

and employment concept data for each system was based loosely upon the data and 

assumptions used for evaluating the data from the MSTAR program and are listed in 

Table A.3.   
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4.3  Evaluator DA Framework Application 

     The data from Table A.1 is introduced into the evaluator DA framework.  The results 

in Table 4.3 indicate that the preference structure elicited from the evaluator regards ATR 

C as the best ATR of the three.  Table 4.3 provides the rankings for the evaluator.  

Figures 4.7 and 4.8 depict the value and utility scores for the ATR evaluator.  Notice that 

the evaluator’s value scores are given in both ISR and CID mode as well as a total value.  

The total value is merely the average of both the ISR and CID values and will allow 

subsequent comparison to a warfighter value score.   

 

Table 4.3  ATR Evaluator DA Model Results (Bold indicates highest score). 

 Employment 
Mode 

ATR A 
(Rank) 

ATR B 
(Rank) 

ATR C 
(Rank) 

CID 0.5913 (3) 0.5982 (2) 0.6282 (1) 
ISR 0.5798 (3) 0.5994 (2) 0.6238 (1) 

 
Value 

TOTAL 0.5856 (3) 0.5988 (2) 0.6260 (1) 
CID 0.5135 (2) 0.5071 (3) 0.5769 (1) 
ISR 0.4484 (3) 0.4589 (2) 0.5018 (1) 

 
Utility 

TOTAL 0.4809 (3) 0.4830 (2) 0.5394 (1) 
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Figure 4.7  Evaluator Value Scores. 

Figure 4.8  Evaluator Utility Scores. 
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4.4  Warfighter DA Framework Application 
 
 
     To assess the value and utility of the warfighter perspective, the MOPs that strictly 

detail ATR performance, which includes the probabilities of detection, identification, 

classification, and false alarm but excludes costs, risks, and employment concept 

information, is then introduced to EADSIM.  Thus, the MOPs used in EADSIM focus 

solely on the measures that assess actual ATR operational performance.  The combat 

results for four different EADSIM runs are summarized in Table 4.4.  The MOEs are 

introduced into the warfighter DA model.  Thus, the raw MOEs are translated via a value 

function and incorporated into the warfighter DA value hierarchy.  The results listed in 

Table 4.5 indicate that the warfighter would prefer ATR B to the other two alternatives.  

Figure 4.9 illustrates the value and utility attributable to each of the warfighter’s goals.  

Figure 4.10 depicts the amount of value each objective composes of the total value score, 

while Figure 4.11 depicts the actual percentage of value each objective contributes 

compared to the total possible value contributable by each objective.  From Figure 4.10, 

it is evident that operations that impacted the effect on the enemy contributed the most 

value associated with each ATR CS (largest shaded region for each ATR), as would be 

expected with the highest valued objective (Figure 3.12).  To compute the objective 

percentage pictured in Figure 4.11, the value of each objective is divided by the 

appropriate top-level weight of the warfighter value hierarchy pictured in Figure 3.12.  

This graph provides insight into which objective is closest to being perfect in its 

contribution towards the overall value.  In this case, ATR C is the best performer in terms 

of the Minimize Bad Press and Minimize Effect on Allies objectives, while ATR B is the 



 

4-14 

best performer in the Maximizing Effect on Enemy objective.  Since the latter is the 

highest valued objective, it is evident why ATR B scores so highly in terms of value. 

 

Table 4.4  MOE Averages from EADSIM (4 Repetitions). 

MOE ATR A ATR B ATR C 
Pct of Dumb Bombs Remaining 1 1 1 

Pct of WMD Remaining 1 1 1 
Pct of S/S Missiles Remaining 0.3571 0.3929 0.4286 
Pct of A/A & S/A Remaining 1 1 1 

Pct Red Forces Damaged 0.4327 0.5577 0.4327 
Pct of Red Personnel Killed 0.3250 0.3173 0.3615 

Pct Red C2 Damaged 0.3750 0.6250 0.3125 
Length of Battle 18.7500 30.7500 17.2500 

Number of Dead Civilians 1.7500 2.7500 1.2500 
Number of Damaged Neutrals 0.7500 1.0000 0.5000 

# of Fratricide occurrences 3.7500 3.2500 0.0000 
Pct Blue Weapons Remaining 0.9375 0.9375 1 

Pct of Blue Personnel Remaining 0.9375 0.9458 1 
Pct of Blue C2 Remaining 1 1 1 

Pct Remaining Dumb Bombs 0.9846 0.9790 0.9841 
Pct Remaining Precision Bombs 0.9840 0.9775 0.9859 

Pct Remaining CMs 0 0 0 
Pct Remaining S/A 0 0 0 

 
 
 

Table 4.5  Warfighter Value and Utility Scores (Bold indicates highest score). 

 ATR A ATR B ATR C 
Value 0.3988 0.5061 0.4140 
Utility 0.3845 0.4908 0.3923 
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Figure 4.9 Warfighter Value and Utility Scores. 

 

Figure 4.10 Warfighter Value Score Breakdown by Objective. 
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Figure 4.11  Warfighter Objective Percentage. 
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4.13.  The most important find is that both view the ranking of the three ATR CSs in 

terms of value and utility in a different way.  The evaluator model indicates that ATR C 

is the best performer, while the warfighter model lists ATR B as the best.  The graphs 

also illustrate the notion that the warfighter DA framework views the value scores of the 

ATR CSs less favorably than the evaluator framework, but is closer in agreement to the 

evaluator model in terms of utility.  One argument for ATR A being the best overall ATR 

system is that it had the highest overall AUC measure average (Table A.2).  However, 

neither the warfighter nor the evaluator framework selected ATR A as the best ATR.  

This indicates that the AUC measure, which is highly regarded in selecting the better 

system among the evaluation community, may not be the major factor in determining the 

superior system.   

     An important way to gain insight into the frameworks is to examine the results for 

differences.  Table 4.6 indicates how the frameworks register similarities and differences 

between the ATRs and between the two frameworks.  Notice that the largest discrepancy 

between the two frameworks occurs over the value and utility scores for ATRs C.  When 

viewing the discrepancies between the two models, there are a few aspects to remember.  

First, the evaluator’s model accounts for the system’s employment concept, or ease of 

use.  EADSIM, in this study, ignores the impact of an ATR employment impact.  Also, 

ATR C performs better in terms of robustness when compared to the other systems.  The 

evaluator’s model places value on this trend, while the low resolution of EADSIM 

scenario used to evaluate the systems does not allow incorporation of this performance 

feature into the warfighter model.   
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     As for similarities between the ATR CSs, it is difficult to find any agreement between 

the two frameworks.  The warfighter model indicates that ATRs A and C are the closest 

in value, while the evaluator model indicates that ATRs A and B are the most similar.  

Between the two frameworks, ATR B is the nearest in terms of value and utility to both 

the warfighter and the evaluator.   

     Finally, cost-effectiveness is considered the “ultimate measure of goodness” when 

conducting an analysis of alternatives (24).  Thus, the ATRs are plotted against their 

respective redeployment costs in Figures 4.14 and 4.15.  Plotting an imaginary line 

between the two endpoints for a given framework (ATRs A and C, in this case) provides 

a benchmark for the ATR CSs in-between.  Any point lying below this line does not 

provide a better value to cost ratio, and is, therefore, not cost-effective.  It is clear that 

ATR B, in terms of both value and utility, is not cost effective to the evaluator, but is the 

most cost-effective to the warfighter.     
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Figure 4.12  Graphical Comparison of Evaluator and Warfighter Value Scores. 

 

Figure 4.13  Graphical Comparison of Evaluator and Warfighter Utility Scores. 
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Table 4.6  Internal and External Differences of DA Frameworks. 

Absolute Differences in Value 
Between ATRs By Model 

A-B A-C B-C 

Evaluator 0.0079 0.0367 0.0287 
Warfighter 0.1023 0.0124 0.0899 

    
Absolute Differences in Value 

Between Models By ATR A B C 
Evaluator-Warfighter 0.2063 0.1119 0.2306 

    
Absolute Differences in Utility 

Between ATRs By Model 
A-B A-C B-C 

Evaluator 0.0021 0.0584 0.0564 
Warfighter 0.1013 0.0050 0.0963 

    
Absolute Differences in Utility 

Between Models By ATR A B C 
Evaluator-Warfighter 0.0900 0.0093 0.1434 

 

Figure 4.14  ATR Value Versus Redeployment Cost. 
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Figure 4.15  ATR Utility Versus Redeployment Cost. 
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decision, the decision-maker now has insight into what each party values in an ATR 

system and which MOEs and MOPs drive those preferences.  The decision-maker also 

has a tool, based upon evaluator and user preferences, costs, risks, and performance 

characteristics, with which to compare various ATR systems and to justify decisions 

made throughout the ATR technology lifecycle.     
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V.  Sensitivity Analysis 
 
 
 

5.1  Overview 
 
 
     The previous chapter details the steps for calculating a single value/utility score from 

both the evaluator and the warfighter perspective, which may then be compared.  

Essentially, we have created a two-pronged DA model.  As seen in Figure 2.27 and 

reproduced here in Figure 5.1, standard practice dictates a need for sensitivity analysis.  

Further, the analysis presented thus far is an expected value analysis in that expected 

values of the MOPs are propagated throughout the two prongs (Figure 5.2) while a 

value/utility score is realized (This value/utility score is not the expected value of the 

value/utility.  This difficulty will be addressed in Chapter VI).  With this in mind, 

sensitivity analysis could be performed using traditional DA tornado diagrams; 

alternatively, a partial differentiation approach is suggested below.  Partial differentiation 

allows the calculation of the individual impact that each MOP has upon the value score at 

a given MOP setting.  Thus, not only could an analyst use the MOP partial differentiation 

results to see how much an MOP is contributing to the value score via the magnitude of 

the partial differentiations, but also in which direction via the sign of the partial 

differentiations.   
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Figure 5.1  Decision Analysis Process Flowchart (19). 

 

Figure 5.2  Two-Pronged DA Model Approach. 
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was adopted for several reasons.  First, the scenario and data used within EADSIM is 

notional.  Thus, the given scenarios, being of an unclassified nature, are of little 

operational interest.  Therefore, there is no overwhelming need to use EADSIM for this 

analysis.  Secondly, EADSIM is a very detailed combat model that offers several 

different controls to many of the aspects of the wargame.  The surrogate, on the other 

hand, provides direct control over only the actions of interest within the combat scenario.  

Finally, the surrogate model requires much less computational time than EADSIM.    

     This chapter is organized as follows.  After sensitivity analysis in the traditional 

decision analysis sense is performed, i.e. expected value tornado diagrams, a surrogate 

combat model is described.  Next, a design of experiments is constructed which allows a 

mapping of MOPs to the MOEs, values, and utilities using the surrogate combat model 

results.  This process produces a meta-model, i.e. a model of the surrogate model.  With 

the meta-model, an ATR evaluator may easily generate expected value/utility rankings 

from a warfighters’ perspective without the use of a combat model and use the 

information when making a decision concerning ATR technology development.  Once 

the meta-model is inserted in place of the surrogate model, partial differentiation is 

performed.  This produces changes in value per unit change in a MOP at a particular 

instantiation of the MOP space, which enables sensitivity analysis.   

 
 
5.2  Tornado Diagrams 
 
 
     Expected value tornado diagrams are typically used to illustrate potential changes to 

the overall value and decision policies as inputs to the DA model, in this case individual 
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MOPs for the evaluator and MOEs for the warfighter, are varied (19).  For example, as an 

MOP is varied away from its original value, the changes in overall value are reflected 

graphically via the tornado diagram, which allows an analyst to evaluate how the decision 

policy changes, i.e. selecting another ATR CS as the best system, by determining the 

most important factors in a decision.  A tornado diagram, as in Figure 5.3, is composed of 

bars that indicate the variation in value, represented along the x-axis, as the variable in 

question is adjusted.  The feature that produces the most variation in expected value for 

the decision generates the longest bar and is always presented at the top of the diagram.  

A tornado-like graphic is produced as subsequent, ranked value variation bars are added 

below the first.  Changes in color along a bar indicate where a decision policy change is 

warranted, e.g. when a selection is no longer optimal.  The vertical line represents the 

original, or base case, value with no variation in the inputs. 

     Tornado diagrams for the evaluator model, shown in Figures 5.3 and 5.4, indicate that 

varying the value of the inputs along their range of possible values could affect the 

optimal decision policy, noted by the bars that extend to the left of the solid line.  The 

solid line represents the value of the second-best ATR CS in terms of value.  Thus, when 

a change in an input associated with the best ATR CS results in a value score that lies 

below the competing ATR CS’s value score, a decision policy change would be 

warranted.  The diagrams also provide insight into the important inputs to the DA model.  

These could suggest areas that an ATR evaluator should spend more time and money 

during ATR technology development.  Notice that the inputs which impact the value 

score as they are varied correspond to the higher ranked MOPs in terms of total possible 

value attributable (Figure 3.1).  Figure 5.5 offers the results for the warfighter’s 
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perspective.  In this case, the only possible policy decision change would occur if the 

percentage of Enemy C2 systems were to decrease to an unsatisfactory level.  In other 

words, ATR B remains the best alternative in regards to value unless the percentage of 

enemy C2 systems damaged falls too low.  Notice that this input is the highest ranked 

MOE in terms of total possible value (Table 3.5).  Further insight may be gained by 

realizing that the top two inputs involve the Maximizing Effect on Enemy objective, 

which is the most heavily valued objective (Figure 3.12).  Notice that the tornado 

diagrams for the evaluator and warfighter perspectives may not be compared directly as 

the evaluator analyzes the MOP set of inputs while the warfighter examines the set of 

MOE inputs.  A direct comparison of tornado diagrams could be accomplished, in 

concept, by varying the individual MOPs, one at a time, to the minimum and maximum 

of their domain values, introducing the settings to a combat model, recording the change 

in value at each setting, and depicting the ranges in value for each MOP via a tornado 

diagram.  This technique, however, is not accomplished here.   
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Figure 5.3  Evaluator Tornado Diagram (ISR). 

 

Figure 5.4  Evaluator Tornado Diagram (CID). 
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Figure 5.5  Warfighter Tornado Diagram. 
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another, such as the Percentage of Red Forces Damaged and Percentage of Dumb Bombs 

Remaining, may be varied one at a time to realize changes in value, but there exists a 

cause and effect relationship between the two.  The relationship is that inflicting 

casualties and damage requires weapons.  Also, when using this method, it is important to 

vary inputs through realistic values.  For instance, it is unrealistic to vary the Length of 

Battle feature to zero days because, under the assumption that a battle is going to take 

place, the battle will take time.  Thus, while useful, the tornado diagram is not without 

limitations. 
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5.3 Combat Model Surrogate 
 
 
     A combat model, which closely emulates the performance processes of EADSIM, 

referred to here as the surrogate model, is used for this area of research.  The surrogate 

combat model is in the form of nine Matlab® subroutines (produced in Appendix B): 

EADSIM2, Scenario, ISR, ATO, CID, BDA, Map, Map2, and Stats.  Figure 5.6 depicts 

the subroutine sequence in the execution of the surrogate model.  The EADSIM2 

subroutine takes six arguments and returns combat results.  The user inputs the number of 

air-to-ground forces as well as the number of ground objects found within the battle 

scene: Red_Tanks, MRLS, Intel, Blue_Tanks, and Neutral.  The user also specifies the 

MOPs associated with the ATR being modeled within the scenario.  The confusion 

matrices in Tables 5.1, 5.2, and 5.3 illustrate the way in which ATR MOPs are 

instantiated within the surrogate model.  Table 5.1 indicates that each object within the 

battle scene has a 90% chance of being detected when the ATR operates under the ISR 

employment setting.  The matrices in Tables 5.2 and 5.3 provide a probability that an 

object within the image scene, i.e. an MRLS, will be classified as a particular type, i.e. as 

an MRLS or a Red_Tank, for the respective employment setting.  For example, if an 

MRLS system has been detected and the NCTR random number draw is 0.79534, the ISR 

system would declare the MRLS as an Intel Truck, while the CID system would declare 

that the target is indeed an MRLS.  Each row is equivalent to the probability of 

identification matrix used in EADSIM (Table 4.2) except that the probabilities are 

expressed cumulatively.  
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Figure 5.6  Surrogate Model Subroutine Sequence. 

 

Table 5.1  ATR CS PD Matrix in Surrogate Model. 

Employment 
Setting 

Red_Tank MRLS Intel Blue_Tank Neutral 

ISR 0.9 0.9 0.9 0.9 0.9 
CID 0.6 0.6 0.6 0.6 0.6 

 

Table 5.2  ATR CS PID Matrix in Surrogate Model (ISR, PID-Type = 0.70). 

  Classified As 
   Red_Tank MRLS Intel Blue_Tank Neutral 

Red_Tank 0.70 0.72 0.75 0.95 1.0 
MRLS 0.08 0.78 0.87 0.97 1.0 
Intel 0.03 0.13 0.83 0.88 1.0 

Blue_Tank 0.15 0.17 0.20 0.90 1.0 

 
Actual 
Type 

Neutral 0.03 0.12 0.22 0.30 1.0 
 

 
Table 5.3  ATR CS PID Matrix in Surrogate Model (CID, PID-Type = 0.95). 

  Classified As 
   Red_Tank MRLS Intel Blue_Tank Neutral 

Red_Tank 0.95 0.96 0.96 0.99 1.0 
MRLS 0.02 0.97 0.98 0.99 1.0 
Intel 0.01 0.03 0.98 0.98 1.0 

Blue_Tank 0.04 0.04 0.04 0.99 1.0 

 
Actual 
Type 

Neutral 0.00 0.02 0.04 0.05 1.0 
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     The EADSIM2 subroutine begins the model execution by initializing the main 

variables and starting the main execution loop.  The Scenario module randomly places 

ground objects in the battle scene and calls of the Map subroutine to display them in the 

first figure.  Next, the ISR module emulates the processes of the ISR platform within the 

EADSIM model.  The ISR platform attempts to detect and classify the ground targets 

within its range according to the matrices that capture its performance level.  The ATO 

module then acts as the ground commander as it translates the targeting information 

generated by the ISR platform into an air tasking order, or strike list.  The strike list is 

then passed to the fighters, which implement a sensor operating under a CID mode.  The 

fighters must classify the potential target at the same identification level as the ISR 

platform in order to launch a weapon against that target.  A target may be destroyed or 

damaged by the air-to-ground fighter.  The Map2 module plots the effects of the air-to-

ground attacks.  The Stats module captures the numerical results of the combat model and 

translates them into MOEs.  The BDA module simply updates a target status matrix.  

 

5.4  Linear Regression  
 
 
     5.4.1  Design of Experiments.   

     Several issues must be answered before constructing the design of experiments for 

mapping the MOPs to both the warfighter’s value scores and MOEs.  First, the amount of 

runs must be manageable.  Next, the confidence intervals surrounding the resultant value 

score estimates should be small enough to realize significant differences between sample 

runs.  In other words, one surrogate model run at a given MOP setting will not offer the 
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required amount of confidence to make judgments against another run.  An acceptable 

confidence interval length must be generated. 

     The large number of MOPs forced the decision to choose a design of experiments that 

used a small fraction of design points.  Rather than evaluating the surrogate model at 

11,534,336 different samples (220), a fractional factorial design allowed the use of 32 

different runs to evaluate the various factors impacting the MOEs and values.  The design 

consisted of 20 separate factors with 15 different design generators (or confounding 

rules) where no main effect is aliased with any other main effect, but is aliased with at 

least a two-factor interaction; that is, a 220-15 fractional factorial design of resolution III 

(48).  The fractional factorial design is listed in Table A.6.    

     To address the sample size issue, random draws were taken from a set of MOP 

estimates, with a standard deviation of 0.05 for each MOP and the following means: PD-

ISR = 0.9, PD-CID = 0.6, PID-ISR= 0.7, and PID-CID = 0.95.  Using the same scenario 

introduced in Chapter IV (15 Red_Tanks, 7 MRLSs, 4 Intel Trucks, 12 Blue_Tanks, 15 

Neutral vehicles, and 5 Blue AG_Attackers), the MOP samples were introduced to the 

surrogate model in run increments of 20 from 20 samples to 400 samples to calculate the 

amount of variance evident between run increments.  This produced 40 different 

observations.  Thus, the value score of the first observation is the average of 20 value 

scores, the second observation is a value score based on the average of 40 value scores, 

and so forth.  Confidence intervals, based upon a confidence level of 95%, surrounding 

the mean value for each of the observations were calculated.  Table 5.4 lists a portion of 

the results.   
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Table 5.4  Surrogate Model Incremental Run Results. 

Observation Runs Value Score 
Mean 

Value Score 
Variance 

95% CI 
Half-Length 

1 20 0.7151 0.0113 0.0466 
2 40 0.696 0.0105 0.0318 
3 60 0.6951 0.0151 0.0311 
4 80 0.6835 0.0107 0.0227 
5 100 0.6753 0.0147 0.0238 
6 120 0.6858 0.0120 0.0196 
7 140 0.6864 0.0120 0.0181 
8 160 0.6842 0.0120 0.0170 
9 180 0.6735 0.0136 0.0170 

… … … … … 
20 400 0.6864 0.0122 0.0108 

 
 
 
     Next, the value score differences between each of the 20 observations were calculated, 

resulting in 190 different value score differences.  The confidence interval half-lengths of 

the 20 run increments were then compared against the value score distance lengths.  To 

discern between 90% of the value score difference would require selecting a confidence 

interval half-length of 0.00125 (0.0025 divided by 2), which corresponds to the first bin 

and its associated frequency in Figure 5.7.  Figure 5.8 illustrates the confidence interval 

lengths surrounding each observation as the run number increase.  Thus, according to the 

results, to achieve an acceptable confidence interval half-length would require a large 

number of runs.   
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Figure 5.7  Value Score Difference Histogram. 

Figure 5.8  Confidence Interval Size by Run Number. 
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     To solve for the required sample size needed to achieve a given value score distance, 

the following heuristic could be implemented (10).  Given n pilot runs (samples) for j 

value score realizations (systems), the half width of the corresponding confidence interval 

could be computed as: 
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is the pooled standard error of the specified point estimator, n1 and n2 correspond to the 

sample sizes of the jth observations, and t n1+n2-1,(1-α/2) is the 100(1-α/2) percentage point 

of a t distribution with n1+n2-1 degrees of freedom.  Assuming that n = n1 = n2, then the 

equation reduces to: 
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Then, the upper and lower values of a confidence interval surrounding the value score 

difference could be computed as: 
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where the first term in the equation represents the difference between the respective value 

score means for two different systems.  If LL ≤ 0 ≤ LU is false, then there is a significant 

difference between the value score means of the two systems.  If LL ≤ 0 ≤ LU is true, then 

we define: 

   ),( 21 xxAbsD −=          (5.6) 

or the absolute difference between the value score differences.  Of the various 

differences, we may now define: 
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where i is the sample size needed to make the expression an equality.  Solving this 

equation provides the sample size necessary to distinguish between all value score 

differences between the j realizations.  These equations work if the sample variances are 

assumed to be equal and the sample sizes are the same, i.e. n1 = n2.  As an example using 

the surrogate model, with a pooled variance of 0.0108 and a t-statistic with α = 0.05 and 

99 degrees of freedom (where n1 = n2 = n = 50), 522 runs would be required to 

distinguish a significant difference between a value score mean difference of 0.0132.   

     However, it may be more beneficial to solve for practically significant confidence 

intervals surrounding the value score difference means rather than statistically significant 

intervals (10).  In other words, the computational time required to derive a difference 

between to value score differences may not be worth the end result.  Therefore, a 

predetermined D, from equation 5.6, should be selected in order to find the proper sample 

size.  Conversely, an acceptable sample size should be selected, and the value score 

difference detectable may be ascertained from Equation 5.7.  This method is implemented 
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for the remainder of this study as n = 300 surrogate model runs were used for all 

appropriate analyses, unless otherwise noted.  

     5.4.2  Model Building.   

     A linear regression model can now be used to capture the relationship between the 

MOPs and both the MOEs and the value/utility scores.  First, a model using only the first 

order terms without interactions is used to find important features (MOPs) that best 

account for the variation found within the outputs (MOEs or value).  The best features 

(effects) are retained and goodness-of-fit tests are performed.  If the model is 

unsatisfactory, linear regression is performed again using interaction terms.  Again, the 

best features are retained and goodness-of-fit tests are performed.  If the interaction 

model is unsatisfactory, then second-order terms are included within the model.  The best 

model of the three models is used to capture the MOP-MOE and MOP-value 

transformation for each output. 

     The following methodology was used to select the effects included in the regression 

models.  First, a backward stepwise model building approach is applied.  With each MOP 

included in the model, effects are systematically dropped out to minimize the value of the 

Akaike's Information Criterion (AIC) defined as: 

   pnSSEnAIC 2)/ln( +⋅= ,     (5.1) 

where n is the number of observations, p is the number of model parameters including the 

intercept, and SSE is the sum of squared errors. This is a general criterion for choosing 

the best number of parameters to include in a model. The model that has the smallest 

value of AIC is considered the best.  Next, beginning with the AIC-minimum model, 

effects that have a t-ratio in absolute value less than 2.0 are retained to create the t-ratio 
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model.  Thus, with the t-ratio model, we can be certain (with a confidence level of 95%) 

that the weight given to an effect in the model is significantly different from zero (61).   

     Two additional techniques were available should the previous methods provide 

unsatisfactory results.  The Cp model uses Mallow's Cp as a model selection criterion by 

selecting the model where Cp approaches the number of parameters in the model, p.  

Mallow's Cp criterion is an alternative measure of total squared error defined as: 

)2(2 pN
s
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




=     (5.2) 

where s2 is the MSE for the full model, SSEp is the sum-of-squares error for a model with 

p variables and the intercept, and N is the number of observations (61).  Finally, the 

adjusted R2 value was minimized using the backward stepwise model building approach.  

R2 is the proportion of the variation in the response that can be attributed to terms in the 

model rather than to random error, i.e., 

YYYY S
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S
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The adjusted R2 term, written as Adj-R2 or R2
adj, adjusts the R2 term to make it more 

comparable over models with different numbers of parameters by using the degrees of 

freedom in its computation.  
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Unlike R2, which always increases as more terms are included in the model, R2
adj is useful 

in stepwise model-building procedures as it decreases when unnecessary terms are added 

to the model (61).  Figure 5.9 uses an abstract illustration to describe the concept behind 

mapping the MOPs directly to the MOEs generated via a combat model.  The arrow 
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refers to the transformation process to be modeled via mathematical techniques.  Thus, T, 

which is a transformation matrix produced via the linear regression model building 

process, is a means to estimate the effects of the combat model.  The results of the model 

building methodology are given below in Table 5.5.  The model type column refers to the 

technique used to generate the data within the given row.  Rows in bold typeface indicate 

the model selected for use. 

 

Figure 5.9  Abstract Depiction of the MOP to MOE Mapping Concept (Warfighter). 
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Table 5.5  MOPs to MOEs Linear Regression Results. 

MOP Model 
Type 

# of 
Features 

Whole Model 
F-Ratio 

Adj R2 RMSE AIC 

AIC 9 62.12 0.9466 0.00996 -286 
RAdj 9 62.12 0.9466 0.00996 -286 

Pct of S/S Missiles 
Remaining 

t-Ratio 6 72.06 0.9322 0.01123 -281 
AIC 16 210.77 0.9908 0.00522 -327 
RAdj 16 210.77 0.9908 0.00522 -327 

Pct Red Forces 
Damaged 

t-Ratio 12 200.94 0.9872 0.00616 -316 
AIC 16 210.60 0.9908 0.00453 -336 
RAdj 16 210.60 0.9908 0.00453 -336 

Pct of Red 
Personnel Killed 

t-Ratio 12 200.38 0.9872 0.00535 -325 
AIC 17 62.81 0.9713 0.01087 -280 
RAdj 17 62.81 0.9713 0.01087 -280 

Pct Red C2 
Damaged  

t-Ratio 12 64.88 0.9611 0.01266 -270 
AIC 15 123.47 0.9834 0.19278 -96 
RAdj 15 123.47 0.9834 0.19278 -96 

Length  
of  

Battle t-Ratio 13 124.29 0.9810 0.20615 -91 
AIC 11 9.12 0.7423 0.28008 -72 
RAdj 11 9.12 0.7423 0.28008 -72 

Number of Dead 
Civilians  

t-Ratio 6 12.98 0.6987 0.30282 -70 
AIC 14 7.85 0.7558 0.07446 -156 

RAdj 14 7.85 0.7558 0.07446 -156 
Number of 

Damaged Neutrals 
t-Ratio 6 12.21 0.6844 0.08465 -152 

AIC 12 14.98 0.8440 0.05044 -182 
RAdj 13 14.01 0.8451 0.05026 -182 

# of Fratricide 
occurrences 

t-Ratio 9 17.27 0.8252 0.05339 -180 
AIC 8 14.07 0.7714 0.00426 -342 
RAdj 10 11.77 0.7765 0.00421 -342 

Pct Blue Weapons 
Remaining 

t-Ratio 5 22.86 0.7383 0.00456 -340 
AIC 7 30.96 0.8712 0.00193 -393 
RAdj 7 30.96 0.8712 0.00193 -393 

Pct of Blue 
Personnel Left 

t-Ratio 4 47.21 0.8564 0.00203 -392 
AIC 16 107.79 0.9822 0.00042 -488 
RAdj 16 107.79 0.9822 0.00042 -488 

Pct Remaining 
Dumb Bombs 

t-Ratio 14 117.76 0.9814 0.00043 -486 
AIC 14 89.24 0.9755 0.00049 -477 
RAdj 14 89.24 0.9755 0.00049 -477 

Pct Remaining 
Precision Bombs 

t-Ratio 12 92.54 0.9726 0.00052 -474 
   
 
 
     Using the linear regression results listed in Table 5.5, the MOPs associated with a 

given ATR CS may be used to produce estimates of the surrogate model MOEs.  This is 

accomplished via matrix multiplication: 

       MOE = MOP · T,      (5.5) 
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where MOE is the 1×18 vector of estimated MOE values, MOP is the 1×21 vector of 

ATR CS performance measures (including an intercept term), and T is the 21×18 

transformation matrix composed of columns which contain the linear regression 

parameters associated with the selected models.  These estimates may then be introduced 

to the value functions and weights of the warfighter’s DA model.  Thus, the above value 

score equation could be rewritten as: 
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where ValueW is the value score estimate for the warfighter, MOP is a given set of n 

MOPs, the wij are the ith weights associated with the jth branch in the DA framework, gn 

is the nth value functions associated with each MOE and expressed as a polynomial up to 

the third order.  The evaluator’s DA framework may also be regressed, but it uses a 

simpler equation:  
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as there is no transformation from MOPs to MOEs.  The value score estimate for the 

evaluator is ValueE.  The gm function for the evaluator uses a polynomial expression up to 

the second order. 

      Continuing in the same model building methodology, the MOPs may be used to 

directly estimate the value score for a particular ATR at a given setting and at a given 

scenario.  Figure 5.10 uses an abstract illustration to describe the concept behind mapping 

the MOPs directly to the value score.  This transformation could be represented by: 

       Value = MOP · V,      (5.8) 
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where V is the transformation vector produced by linear regression of the MOP inputs 

(the MOP matrix) versus the surrogate model value scores, and Value is the estimated 

value score.  A Utility estimate is produced similarly, using a different transformation 

vector, U.  Table 5.6 details the results of applying the aforementioned linear regression 

techniques toward creating a model that accurately estimates the value score given the set 

of MOPs.  Table 5.7 accomplishes the same for estimating the utility score with the same 

set of MOPs. 

 

Figure 5.10  Abstract Depiction of the MOP to Value Mapping Concept  
                                (Warfighter). 
 
 
 

Table 5.6  MOPs to Value Score Linear Regression Results (Warfighter). 

Model 
Type 

Number of 
Features 

Whole Model 
F-Ratio 

Adj R2 RMSE AIC 

AIC 15 80.27 0.9746 0.00599 -318 
RAdj 15 80.27 0.9746 0.00599 -318 

t-Ratio 11 93.57 0.9705 0.00646 -314 
 

 

 

 

MOPs Combat 
Model MOEs Value

VV
Transformation

DA 
ModelMOPs Combat 

Model MOEs Value

VV
Transformation

DA 
Model



 

5-22 

Table 5.7  MOPs to Utility Score Linear Regression Results (Warfighter). 

Model 
Type 

Number of 
Features 

Whole Model 
F-Ratio 

Adj R2 RMSE AIC 

AIC 14 104.84 0.9791 0.00564 -322 
RAdj 14 104.84 0.9791 0.00564 -322 

t-Ratio 11 105.98 0.9739 0.00632 -315 
 

 

     For the evaluator, this transformation process does not include a transformation 

through a combat model.  This allowed a larger fractional factorial design to be used.  

The design made use of 128 different observations with 23 factors sampled at two 

different levels. Figure 5.11 abstractly illustrates the transformation vector as it 

transforms the evaluator’s MOP set directly into value.  Table 5.8 details the results of 

the linear regression model building process for the evaluator’s transformation vector.  

The AIC, R2-Adj, and t-Ratio models yielded a model consisting of all 23 factors.  Due to 

confounding effects within model, this is not a preferred solution.  To combat the 

confounding effects, a model, called the 7 Objectives model, that consists of the strongest 

factor from each of the seven objectives (except for the Classification Ability objective, 

from which both MOPs were used as factors as they represented the two most important 

factors) was used. 
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Figure 5.11  Abstract Depiction of the MOP to Value Mapping Concept (Evaluator). 

 

Table 5.8  MOPs to Value Score Linear Regression Results (Evaluator). 

Model 
Type 

Number of 
Features 

Whole Model 
F-Ratio 

Adj R2 RMSE AIC 

AIC 23 3.1601e+8 1.00 0.000017 -2786 
RAdj 23 3.1601e+8 1.00 0.000017 -2786 

t-Ratio 23 3.1601e+8 1.00 0.000017 -2786 
7 Objs 8 92.4255 0.9521 0.050252 -757 

 
 
 

     5.4.3  Results.   
 

     The transformation matrix, T, provides a mapping of MOPs to MOEs, as depicted in 

Figure 5.9.  Not only does this matrix serve as a method for transforming MOPs 

efficiently into MOEs without the need for a combat model, but it is also serves as a 

method for determining which MOPs are the most important for affecting MOEs.  For 

instance, the transformation matrix, listed in its entirety in Table A.5, indicates that, for 

the Pct Red Forces Damaged MOE, the CID Red_Tank PD (0.542) is the most significant 

factor.  Thus, the most important factor in maximizing the effect on enemy forces is the 

ability of the fighter aircraft to locate the Red_Tanks in the battlespace.  In fact, the 
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second most important factor is the CID platform’s ability to correctly identify 

Red_Tanks.   

     The direct transformation of MOPs to value and utility using a linear regression 

approach for the warfighter’s perspective yields the transformation vectors found in 

Table A.4.  As expected, the close relationship between the warfighter’s expectation in 

value and utility is reflected in the transformation vector.  Also, the magnitude for each of 

the MOPs is roughly the same for each vector. 

     The linear regression results can be used in the following manner.  Table 5.9 lists the 

value score results for the evaluator’s DA model: via direct MOP insertion into the 

evaluator DA model and via linear regression using the All 23 Factors and 7 Objectives 

models.  While the value magnitudes are different, the rankings are not.  Thus, the 

evaluator could use the linear transformation from MOPs directly to value score as an 

estimate of the DA model.  Table 5.10 lists the value score results for the warfighter’s 

DA model: via introducing the MOP set into the warfighter’s DA model employing both 

EADSIM and the surrogate model, using the linear transformation from MOPs to MOEs, 

and using the linear transformation from MOPs to value.  The warfighter linear 

transformation from MOEs to value results in a different ranking scheme, but retains 

ATR B as the best performer.   

     The weakness in this approach seems to lie in the direct transformation from the 

MOPs to the value score.  There are several possible reasons for the differences between 

the expected and the predicted value scores.  First, the regression performed is linear, 

whereas the value and utility functions of the DA models are typically non-linear.  Next, 

the surrogate model does not perfectly emulate the execution of EADSIM.  Therefore, 
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there will be some differences in the MOEs, which impact the transformation matrix and 

the resultant value scores produced through linear regression.  Finally, the linear 

regression model building process does induce error into the predicted value score as it 

tries to fit the data.  In other words, the predicted value score will always be different 

from the actual value score.  

 

Table 5.9  Evaluator Linear Regression Comparison (Rank in Parenthesis). 

ATR  
CS 

Evaluator DA 
Model 

MOP to Evaluator 
Value 

(All 23 Factors Model)

MOP to Evaluator 
Value  

(7 Objectives Model) 
A 0.6116 (3) 0.5556 (3) 0.5632 (3) 
B 0.6195 (2) 0.5668 (2) 0.5825 (2) 
C 0.6482 (1) 0.5995 (1) 0.6042 (1) 

 
 
 

Table 5.10  Warfighter Linear Regression Comparison (Rank in Parenthesis). 

ATR  
CS 

Warfighter  
DA Model 

 w/EADSIM 

Warfighter  
DA Model 

w/Surrogate  

MOP to  
MOE via  
LR (T) 

MOP to 
Value via  

LR (V) 
A 0.3988 (3) 0.6372 (3) 0.6735 (2) 0.6889 (1) 
B 0.5061 (1) 0.6514 (1) 0.6741 (1) 0.6708 (3) 
C 0.4140 (2) 0.6428 (2) 0.6594 (3) 0.6813 (2) 
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Figure 5.12  MOP Input Structure for Evaluator and Warfighter Frameworks. 

 

5.5  Partial Differentiation. 
 
 
     One way to gauge the relative importance, or saliency, of an MOP to the resultant 

value or utility is partial differentiation.  The value score from the warfighter’s DA model 

may be computed from the formula: 
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where MOPn is the nth of N MOPs, the wij are the ith weights associated with the jth 

branch in the DA framework, gn is the nth value functions associated with each MOE and 

expressed as a polynomial up to the third order (19,39).  Utility scores are produced 

similarly, using a utility function, hn, rather than a value function, gn.  The w0
mn weights 
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were produced in the linear regression process (Formula 5.5) and take the form of the 

transformation matrix (Table A.5).  The entire transformation is depicted graphically in 

Figure 5.13. 

 

 Figure 5.13  Graphical Depiction of Warfighter MOP to Value Transformation. 
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This equation may then be differentiated with respect to each individual MOP.  Applying 

the chain rule here we have: 
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where  
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The process is simpler for the evaluator MOP to value transformation since there is no 

transformation through a combat model.  Thus, from the evaluator’s perspective, Figure 

5.13 would not include a transformation matrix to account for the combat model nor the 

MOEs. 

     The results for the warfighter, using the data from the application in Chapter IV, are 

given in Table 5.11.  The sample MOP points are given, followed by the evaluated partial 

differentiations for the individual MOPs.  The results indicate that the features that offer 

the most change in regards to increasing the value score are the PD and PID performance 

measures for the CID platform operating against Red_Tanks, MRLSs, and Intel trucks.  

Increasing the CID platform’s PD performance against the MRLS vehicles offers the 

largest decrease in value, while the major increase in value is available through 

increasing the ISR platform’s detection performance against friendly tanks.  The former 

seems to be contradictory in that increasing detection and identification against the 

enemy results in a decreased value.  However, this probably reflects the additional time 

required, the additional expended weapons, and the increased probability of destroying 

friendly and neutral targets as more sorties are performed.  The latter seems to reflect the 

importance placed upon reducing fratricide, also seen in the warfighter tornado diagram 

(Figure 5.5).  It is interesting that increasing the CID platform’s PID performance against 
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Blue_Tanks (though small) results in a negative impact on the value score.  This could be 

due to the fact that most Neutral vehicles are in a close proximity to Blue_Tanks, or that 

correctly detecting a Blue_Tank results in the slight increase in probability of an 

occurrence of fratricide due to the possible misclassification as an enemy vehicle.  

 

Table 5.11  Warfighter Partial Differentiation Vectors at Sample MOP                          
                               Observations. 

 Observed MOPs Partial Differentiations 
MOP A B C A B C 

ISR RED TANK PD 0.900 0.900 0.900 -0.0104 -0.0104 -0.0103 
ISR MRLS PD 0.900 0.900 0.900 0.0000 0.0000 0.0000 
ISR INTEL PD 0.900 0.900 0.900 -0.0730 -0.0749 -0.0758 

ISR BLUE TANK PD 0.900 0.900 0.900 0.1073 0.1083 0.1098 
ISR NEUTRAL PD 0.900 0.900 0.900 -0.0002 -0.0002 -0.0002 

CID RED TANK PD 0.600 0.600 0.600 -0.1623 -0.1623 -0.1647 
CID MRLS PD 0.600 0.600 0.600 -0.2793 -0.2787 -0.2832 
CID INTEL PD 0.600 0.600 0.600 -0.2155 -0.2189 -0.2216 

CID BLUE TANK PD 0.600 0.600 0.600 0.0020 0.0020 0.0020 
CID NEUTRAL PD 0.600 0.600 0.600 0.0000 0.0000 0.0000 

ISR RED TANK PID 0.683 0.743 0.640 -0.0350 -0.0343 -0.0350 
ISR MRLS PID 0.595 0.920 0.590 -0.0088 -0.0063 -0.0069 
ISR INTEL PID 0.423 0.203 0.402 -0.1460 -0.1488 -0.1505 

ISR BLUE TANK PID 0.858 0.900 0.725 -0.0978 -0.0986 -0.0999 
ISR NEUTRAL PID 0.410 0.322 0.482 -0.1257 -0.1267 -0.1284 

CID RED TANK PID 0.878 0.918 0.875 -0.1340 -0.1343 -0.1363 
CID MRLS PID 0.918 0.995 0.989 -0.1828 -0.1821 -0.1851 
CID INTEL PID 0.813 0.665 0.807 -0.1877 -0.1909 -0.1933 

CID BLUE TANK PID 0.995 0.995 0.974 -0.0173 -0.0173 -0.0172 
CID NEUTRAL PID 0.824 0.714 0.827 -0.0023 -0.0023 -0.0023 

 
 
 
     The results of differentiation in the evaluator’s framework can be seen in Table 5.12.  

The MOPs used to produce the partial differentiation weights are the same set used in the 

Chapter IV application and can be found in Table A.3.  The results hint at the reason for 

the insensitivity of the evaluator’s framework with the MSTAR data (40).  The values 

indicate that the most significant change would result from a deviation in the self-
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assessment accuracy measures.  However, these values were evaluated at their maximum 

value (as the measures were not available in MSTAR) and could only be decreased.  

Increasing the probabilistic performance measures, such as PID and PCC, will result in an 

increase in the value score, as expected.  One interesting result is that each model 

indicates that increasing the redeployment monetary cost would increase the value score 

at the particular point in MOP space.  Also notice that the partial differentiation values 

are not merely reproductions of the total possible values attributable to each MOP found 

in Table 3.1.  Though the total possible value results do indicate the possible importance 

placed upon an MOP, the values, much like the tornado diagram results, evaluate one 

MOP at a time and do not include estimations of the inherent MOP interaction.  
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Table 5.12  Evaluator Partial Differentiation Vectors at Sample MOP Observations. 

  Partial Differentiations 
  CID ISR CID ISR CID ISR 

Objectives MOPs A A B B C C 
 %∇ PD -0.0027 -0.0025 -0.0028 -0.0029 -0.0026 -0.0026 

Robustness %∇ PID -0.0018 -0.0017 -0.0017 -0.0017 -0.0017 -0.0018 
 %∇ PCC -0.0018 -0.0018 -0.0019 -0.0018 -0.0018 -0.0019 

Detection FAR|PD -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 
Performance PFA|PD 0.0579 0.0579 0.0579 0.0579 0.0579 0.0579 
Employment 

Concept  -0.0300 -0.0300 -0.0300 -0.0300 -0.0300 -0.0300 
Declaration 

Ability PDEC 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 

Classification PID 0.0008 0.0005 0.0008 0.0006 0.0008 0.0005 
Ability PCC 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 

 Money 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Development Time 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Cost Expertise -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 
 Risk -0.0152 -0.0152 -0.0152 -0.0152 -0.0152 -0.0152 
 Money 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 

Redeployment Time -0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000 
Cost Expertise -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

 Risk -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 
 Money -0.0114 -0.0114 -0.0113 -0.0113 -0.0113 -0.0113 

Use Cost Time -0.0168 -0.0168 -0.0168 -0.0168 -0.0168 -0.0168 
 Expertise -0.0280 -0.0280 -0.0280 -0.0280 -0.0280 -0.0280 

Self- ES-PD -0.0840 -0.0840 -0.0840 -0.0840 -0.0840 -0.0840 
Assessment ES-PID -0.1313 -0.1313 -0.1313 -0.1313 -0.1313 -0.1313 

 ES-PCC -0.1747 -0.1747 -0.1747 -0.1747 -0.1747 -0.1747 
 
 
 
     These results may be compared to the tornado diagram approach presented in Section 

5.2.  The tornado diagrams for the evaluator DA model (Figures 5.3 and 5.4) indicated 

that only a few of the features offered a significant impact on the overall value when 

varied: six features for the CID setting and three for the ISR setting.  Both settings 

indicated that value was sensitive to the ES-PCC measure, the PFA|PD measure, and the 

Employment Concept rating.  For the CID setting, the three robustness measures showed 
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significant change to the value score when varied.  The partial differentiation approach 

indicate that the features that offer the most change in value (with a partial derivative 

absolute value greater than or equal to 0.300) are the three self-assessment accuracy 

measures, the overall detection measures, and the employment concept rating.  The 

highest rated salient feature using this method was the ES-PCC measure, which is also the 

most salient measure according to the ISR tornado diagram.  Using partial differentiation, 

the second-most salient feature category was the Overall Detection Performance 

objective, which includes the PFA|PD and FAR|PD measures.  The PFA|PD measure was 

ranked first in the CID tornado diagram.  The two approaches do differ in some respects.  

The partial differentiation approach considers all of the features in the self-assessment 

accuracy category as salient while the tornado diagrams make no such indication.  While 

both approaches indicate the direction a feature changes the value, only the tornado 

diagram indicates whether or not the decision policy changes (color changes).  In 

summary, the calculation of the total possible value attributable to each input is an 

excellent way to screen for features that should have a large impact on the overall value 

score.  Tornado diagrams are also useful for determining important features, and they 

indicate when decision policy changes may occur as the input features are varied along 

their respective domains.  Both techniques allow an analyst to rank each input feature by 

its expected impact on the value score.  However, neither of these techniques account for 

any interactive effects between the features.  Determining salient features via partial 

differentiation does offer a means to account for the inherent interactions within the 

inputs.  This technique provides an analyst insight into the expected value score impact 

for a change in feature value while any other feature is also varied.  The fact that the three 
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techniques produce three different views of the features and their influence on the overall 

DA model outputs illustrates that analysts have several different tools for sensitivity 

analysis at their disposal.     
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VI.  Multinomial Selection Procedure 
 
 
 

6.1  Introduction 
 
 
     The direct comparison of value and utility scores, like those calculated in Chapter IV, 

may be misleading because the ATR performance measures that characterize the 

individual ATR CSs are estimates of the true MOPs.  In fact, the MOPs are random 

variables, and standard procedure is to represent them with their respective sample 

means.  Obviously, this approach ignores the inherent uncertainty surrounding the 

parameter estimate.  Chapter V illustrated how slight changes within the MOPs affect the 

overall value score results.  This chapter illustrates how a multinomial selection 

procedure (MSP) may be used not only to account for the variability within the 

estimation of the MOPs, but also to provide a certain level of confidence surrounding the 

comparison of multiple ATR CSs.  By simply using an ordered evaluation measure to 

distinguish between multiple ATR CSs, the MSP allows the selection of a best performer 

and introduces variation within the MOP estimates, which the Chapter IV comparisons 

lacked.  A variation of the MSP introduced in Chapter II is used in this section.   

     This chapter details the steps taken to perform the MSP on the ATR evaluation 

methodology presented.  First, assumptions must be made to allow for the use of the 

MSP.   To begin the process, the input MOPs are treated random variables rather than a 

point estimate.  A random draw from each MOP distribution is taken.  This draw is 

propagated through the surrogate combat model to produce a random sample of the value 

scores.  For example, rather than using a value of 0.6 as the probability of detection 
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against Intel vehicles, the PD is drawn from a normal distribution with a mean of 0.6 and 

a given standard deviation.  The resultant value scores are then compared via the MSP.  

The performance data of three notional ATR CSs introduced in Chapter IV provides a 

simple example of the procedure.   

 
 

6.2  Assumptions   
 
 
     To implement the MSP, certain assumptions need to be made concerning the data.  

First, larger is assumed to be better.  Thus, a higher value or utility score is representative 

of a better system.  Secondly, it is assumed that there is a constant probability of success 

over all test trials.  This assumption holds as long as the test trials are at random, and the 

probabilities of success obtained are still estimates of the probabilities of winning in any 

randomly selected trial.  Finally, it is assumed that the trials are independent both across 

and within the systems.  This is a reasonable assumption considering the method by 

which an ATR selects and scores features from an individual region of interest (ROI) 

within a target scene.   

 
 
6.3  MOP Estimation   
 
 
     The MOPs of the ATR CSs are based upon estimates collected during ATR testing.  

For instance, an ATR CS undergoes testing prior to operational use and is proposed to 

operate at a given performance level, e.g. at a PD setting of 0.9, an ATR CS may be said 

to operate at a PID of 0.5.  However, this statistic is based upon randomized test data.  

Thus, both performance measures, in this case, are also random variables.  This 



 

6-3 

uncertainty detracts any confidence in comparisons made between ATR CSs via value 

scores.  To account for this uncertainty, the MOPs used in the MSP are drawn from a 

normal population with a mean of the estimated performance level and predetermined 

standard deviation, i.e. PD~Normal(0.9, 0.05).  The standard deviation value was chosen 

to be small enough to ensure that the performance measures remained reasonably well 

within the employment concept regions depicted in Figure 4.1.  Each of the random 

draws is also bounded at a value of one since the MOPs in question are probabilities.  

Drawing MOP value estimates randomly could reflect sampling error of the MOP 

estimation made during the performance measure assessment of an ATR CS.  

 
 

6.4  Application   
 
 
     A procedure similar to the one described in formulas 2.45 and 2.46 is implemented in 

the following application.  The procedure is described as: 

 

1.  Given n test data points, compare estimated value scores for each of the i  
     classifiers.  

 
2.  Select the best classifier for each data point as the classifier with the maximum  
     estimated value score. 

 
3.  Compute the number of wins/successes Yi for each classifier i. 
 
4.  Let Y[1] ≤ Y[2] ≤ Y[3] be the ranked number of successes from Step 3.  Select  
     the classifier associated with the largest count, Y[3], as the best. 
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Thus, the equations used are: 
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where pi is the probability of system i being the best, Z1-α/2 is the test statistic using the 

normal approximation (large sample size; n>30), and (1-α/2) is the desired level of 

confidence.  Equation 6.1 provides the formula for calculating the probability of being 

the best performer via a value score point estimate, and equation 6.2 describes the 

confidence interval generated around the probability of being the best performer, i.e. 

PBEST.   

     Using the assumptions listed above, the MSP may be applied to an ATR CS 

comparison example.  The data used for the application in Chapter IV was used and is 

found in Table A.1.  The PD, PID, PCC, and PFA values found in the table served as the 

means of the normal distribution from which the actual MOP estimates used were taken.  

A standard deviation of 0.05 was selected for each random draw.  The randomized MOPs 

were then input to both the evaluator DA model and the surrogate combat model.  The 

combat model results were then introduced to the warfighter DA model.  Both DA 

models produced the value scores used in the MSP.  An analysis on utility scores could 

be performed similarly, but were not accomplished here.  The results of the MSP using 

the resultant value scores were generated using formulas 2.45 and 2.46 are found in 

Tables 6.1 and 6.2.  
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Table 6.1  MSP Results for Evaluator Framework. 

Test Data Value Score Win/Successes = 1 
Number ATR A ATR B ATR C ATR A ATR B ATR C 

1 0.6043 0.6040 0.6404 0 0 1 
2 0.5995 0.6039 0.6401 0 0 1 
3 0.6007 0.6073 0.6357 0 0 1 
… … … … … … … 
300 0.5983 0.6066 0.6371 0 0 1 

0 0 300  Successes (Yi) = 
PBEST = (Yi/n) = 0.00% 0.00% 100.00% 

 
 
 

Table 6.2  MSP Results for Warfighter Framework. 

Test Data Value Score Win/Successes = 1 
Number ATR A ATR B ATR C ATR A ATR B ATR C 

1 0.7756 0.7575 0.4156 1 0 0 
2 0.6241 0.3852 0.7949 0 0 1 
3 0.7286 0.5950 0.4100 1 0 0 
… … … … … … … 
300 0.5509 0.8334 0.5376 0 1 0 

99 123 78  Successes (Yi) = 
PBEST = (Yi/n) = 33.00% 41.00% 26.00% 

 
 
 

Table 6.3  PBEST Confidence Intervals for Evaluator Framework. 

PBEST ATR A ATR B ATR C 
Upper 0.00% 0.00% 100.00% 

Estimate 0.00% 0.00% 100.00% 
Lower 0.00% 0.00% 100.00% 

 
 
 

Table 6.4  PBEST Confidence Intervals for Warfighter Framework. 

PBEST ATR A ATR B ATR C 
Upper 38.32% 46.57% 30.96% 

Estimate 33.00% 41.00% 26.00% 
Lower 27.68% 35.43% 21.04% 
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6.5  Conclusions  
 
 
     From the MSP results in Tables 6.3 and 6.4, it is clear that the best overall ATR CS 

from each perspective is easy to distinguish for the evaluator.  The procedure provides 

insight into selecting the better system and a methodology for confidence associated with 

selecting a best performer.  In regards to the ATR evaluator’s decision, both ATRs A and 

B can be eliminated from the comparison, ATR C is the only ATR worth considering.  

The number of successes indicates that the overall value is not very sensitive to changes 

made only to the performance areas varied within the evaluator model (PID, PFA, and 

PCC).  This is reasonable in that previous sensitivity analysis performed upon the 

evaluator’s DA model indicated that no one variable, varied up to 10 percent of its 

estimated value, significantly altered the value score enough to change the ATR CS 

selection decision (40).  From the warfighter’s perspective, ATR B seems to be a better 

choice, but cannot be considered the best choice as the lower bound of ATR C’s PBEST 

(35.43%) is lower than the PBEST upper bound of ATR CS A (27.68%).  The conclusions 

from Chapter IV indicated that with the given preference structure, the evaluator would 

prefer ATR C, while the warfighter would prefer ATR B.  The MSP results further 

support these findings, and reflect sensitivity of the value scores to changes within the 

MOP estimates that were not necessarily noticeable with any associated confidence.  

Again, examining Table A.2, it is interesting that the ATR with the largest average AUC 

measure (ATR A) is the only one chosen for elimination by both of the interested parties.  

The results indicate that sensitivity can be very valuable for gaining insight into decision-
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maker preferences, eliminating competitors from comparison, and making decisions with 

an associated level of confidence.    
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VII.  Summary and Recommendations 
 
 
 

7.1  Overview 
 
 
     This dissertation research provides a methodology for improving programmatic 

decision-making within the realm of ATR technology development.  This section 

summarizes the resultant contributions of the research and lists possibilities for future 

research. 

 

7.2  Summary 
 
 
     This dissertation research implemented expanded decision analysis practices to 

provide an evaluation methodology for ATR CS comparison.  The proposed methodology 

models the subjective preferences of both an ATR evaluator decision-maker and the 

eventual product user.  First, the methodology presents a way to synthesize the many 

ATR performance measures into two different scores for value and utility, which 

incorporate the preference structure and risk attitude of the evaluator decision-maker.  

Next, a methodology is presented that translates the performance characteristics of a 

particular ATR CS into measures of effectiveness via a combat model.  These MOEs are 

then introduced to the warfighter decision analysis model, which also produces both a 

value and utility score.   

     While these scores serve as valuable insight to both parties, there are limitations to 

direct comparison techniques.  The value scores provide little insight as to the sensitivity 

of the ATR systems to the MOPs.  Further, these scores ignore the variation inherent 



 

7-2 

within the MOPs of the ATR CSs.  An MSP is introduced to enable selection of the best 

ATR CS in terms of value.  The MSP not only accounts for the variation within the ATR 

performance measures, but also provides a level of confidence with decisions made 

concerning the value scores.  Following the selection of the best alternative, a sensitivity 

analysis approach is described.  The sensitivity analysis described examines the DA 

framework inputs by calculating the total possible value attributable to each input, 

producing tornado diagrams of each input, and calculating salient measures via partial 

differentiation.  Linear regression is used to create a value (utility) response surface to 

enable sensitivity analysis via differentiation.  With these results, evaluators and 

warfighters may determine the value they place on an individual ATR CS and their 

respective performance characteristics, which aids in the decision making process 

throughout the life-cycle of automatic target recognition technology development.  Figure 

7.1 illustrates the decision analysis approach to a problem and how this dissertation 

research used these concepts. 
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Figure 7.1  Decision Analysis Approach and Implementation. 

 
 

7.3  Contributions 
 
 
     This section summarizes the contributions resulting from this research. 

     7.3.1  Development of an Overall Methodology for ATR Technology Evaluation.   

     The chief contribution that this research offers is an overall approach to evaluating the 

various technologies being developed under the responsibility of the Sensors Directorate 

of the Air Force Research Laboratory. 

     7.3.2   Development of an Evaluator Decision Analysis Framework.   

     This dissertation presents a methodology for constructing a decision analysis 

framework for use in ATR CS evaluation, particularly for comparison between 

competing CSs.  This framework is the result of joint dissertation research conducted by 

the author and Col William K. Klimack, USA.  The research detailing the evaluator DA 

framework has already resulted in a technical report, and supporting results have been 

included in further dissertation research (11,39,40).  
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     7.3.3  Development of a Warfighter Decision Analysis Framework.   

     This dissertation introduces a methodology for constructing a decision analysis 

framework from the warfighter’s perspective.  This methodology is important since it has 

been shown that optimizing ATR CS MOPs does not necessarily translate into desirable 

operational results.  The framework allows an ATR evaluator to discern what MOP 

mixture may produce an optimal mixture for operational results.     

     7.3.4  Development of a Methodology for MOP to MOE Translation.   

     This dissertation describes a method of translating MOPs associated with an ATR CS 

into MOEs that capture the operational results when an ATR technology is applied to an 

operational environment.  It is also noteworthy that the combat model used to 

demonstrate this methodology is an USAF-accepted model with an impressive VV&A 

pedigree. 

     7.3.5  Development of a Heuristic for Determining the Number of Simulation  
               Runs Necessary to Gain a Desired Confidence Interval Half-length about a   
               Value/Utility Score Estimate.   

     The process, detailed in Chapter V, offers an analyst a technique for determining an 

acceptable number of runs needed to calculate an acceptable confidence interval width 

for value or utility score estimate comparison. 

 
 
7.4  Recommendations 
 
 
     There are many potential avenues of research branching from this research.  This 

section highlights a few of the possibilities.  
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     7.4.1  Sensitivity Analysis on ATR CS Value Across Differing Scenarios.   

     Since the preference structure of the warfighter change as the operational scenario 

changes, i.e. a regional, conventional conflict may have different goals than a global, 

nuclear conflict; it would be advantageous to capture the robustness of given preference 

structures across several operational scenarios.  The results could be used to aid in 

designing an ATR that is best suited for accomplishing missions in multiple 

environments. 

     7.4.2  Creation of a Defined List of MOPs for Current and Future ATR  
               Technologies.   

     One of the difficulties of comparing current ATR technologies is the differing ‘lingo’ 

used by the various organizations producing ATR technologies.  For instance, the 

performance measure labeled PD may mean probability of detection to one researcher, 

but probability of declaration to another.  Creating a single vocabulary for all ATR 

technology developers, evaluators, and users would strengthen the argument for 

incorporating the decision analysis frameworks and simplify the MOP and MOE 

definition process. 

     7.4.3  Include the Effects of Sensor Fusion.   

     The idea of making decisions based upon multiple ATR sensors is not a new one, but 

incorporating the effects of fusing ATR systems (rather than having them compete) could 

yield interesting results, especially when a value score is associated with the fused 

systems. 
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Appendix A.  ATR Application Performance Data. 

Table A.1  ATR Performance Data. 

    CID     ISR   
  A B C A B C 
 RED_TANK 0.6 0.6 0.6 0.9 0.9 0.9 
 MRLS 0.6 0.6 0.6 0.9 0.9 0.9 

PD INTEL 0.6 0.6 0.6 0.9 0.9 0.9 
 BLUE_TANK 0.6 0.6 0.6 0.9 0.9 0.9 
 NEUTRAL 0.6 0.6 0.6 0.9 0.9 0.9 
 OVERALL 0.6 0.6 0.6 0.9 0.9 0.9 
 TANK 0.949 0.970 0.970 0.897 0.925 0.891 
 MML 0.960 0.970 0.950 0.760 0.780 0.810 

PCC TRUCK 0.984 0.960 0.977 0.911 0.895 0.888 
 OVERALL 0.965 0.966 0.969 0.875 0.884 0.873 
 RED_TANK 0.890 0.960 0.920 0.830 0.840 0.700 
 MRLS 0.960 0.970 0.950 0.760 0.780 0.810 

PID INTEL 0.980 0.910 0.940 0.820 0.700 0.690 
 BLUE_TANK 0.870 0.900 0.940 0.690 0.810 0.790 
 NEUTRAL 0.950 0.920 0.960 0.800 0.850 0.830 
 OVERALL 0.930 0.932 0.942 0.780 0.796 0.764 
 RED_TANK 0.123 0.083 0.125 0.318 0.258 0.360 
 MRLS 0.082 0.005 0.011 0.405 0.080 0.410 

PFID INTEL 0.188 0.336 0.193 0.577 0.797 0.598 
 BLUE_TANK 0.005 0.005 0.026 0.143 0.100 0.275 
 NEUTRAL 0.176 0.286 0.173 0.590 0.678 0.518 

PFA OVERALL 0.115 0.143 0.106 0.406 0.383 0.432 
FAR # per 10000 km2 3 4 2 9 12 6 

 RED_TANK 7.094 18.156 6.271 18.720 15.389 11.895 
% MRLS 16.011 5.931 12.537 19.078 7.500 15.006 

Change INTEL 15.269 5.864 10.113 12.040 8.797 9.593 
PD BLUE_TANK 13.734 7.934 19.195 14.839 7.827 16.787 

 NEUTRAL 12.678 16.757 18.684 11.520 10.684 14.142 
 OVERALL 12.957 10.928 13.360 15.240 10.039 13.484 
 RED_TANK 17.675 9.771 19.323 8.903 11.660 10.549 

% MRLS 7.372 17.239 12.513 19.898 9.742 14.920 
Change INTEL 7.909 17.602 8.574 15.271 11.410 8.831 

PID BLUE_TANK 19.538 10.324 15.709 15.766 17.152 11.035 
 NEUTRAL 7.821 8.759 11.111 11.264 15.374 8.904 
 OVERALL 12.063 12.739 13.446 14.220 13.068 10.848 
 RED_TANK 11.282 9.351 15.253 18.815 15.760 11.453 

% MRLS 13.714 16.499 17.443 10.638 14.775 11.114 
Change INTEL 15.556 8.768 15.876 15.150 18.105 16.372 

PCC BLUE_TANK 18.136 18.833 12.559 14.785 16.350 15.769 
 NEUTRAL 17.917 8.061 8.584 12.397 12.206 8.112 
 OVERALL 15.321 12.302 13.943 14.357 15.439 12.564 
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Table A.2  ATR Binormal ROC Data. 

   CID     ISR  
 TGT Type A B C  TGT Type A B C 

Distance RED_TANK 2.40 3.15 2.56  RED_TANK 1.43 1.65 0.88 
Between MRS 3.15 4.46 3.97  MRS 0.95 2.18 1.11 
Means  INTEL 2.95 1.76 2.43  INTEL 0.73 -0.30 0.28 
(∆m) BLUE_TANK 3.71 3.86 3.51  BLUE_TANK 1.57 2.16 1.40 

 NEUTRAL 2.58 1.97 2.69  NEUTRAL 0.61 0.58 0.90 
          

AUC RED_TANK 0.9552 0.9870 0.9649  RED_TANK 0.8440 0.8783 0.7331 
Measure MRS 0.9870 0.9992 0.9975  MRS 0.7491 0.9384 0.7837 

 INTEL 0.9815 0.8933 0.9571  INTEL 0.6971 0.4160 0.5785 
 BLUE_TANK 0.9956 0.9956 0.9935  BLUE_TANK 0.8665 0.9367 0.8389 
 NEUTRAL 0.9659 0.9182 0.9714  NEUTRAL 0.6669 0.6591 0.7377 

Average  0.9770 0.9587 0.9769   0.7647 0.7657 0.7344 
(Rank)  (1) (3) (2)   (2) (1) (3) 

 

Table A.3  MOP Inputs for Evaluator Framework. 
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Table A.4  MOP to Value and Utility Translation Vectors.  

 

 

 

 

 

 

 

 

 

 

 

Value Utility
INTERCEPT 1.7000 1.7609

ISR RED_TANK PD 0 0
ISR MRS PD 0 0

ISR INTEL PD 0 0
ISR BLUE_TANK PD 0.1095 0.1061

ISR NEUTRAL PD 0 0
CID RED_TANK PD -0.1537 -0.1723

CID MRS PD -0.2613 -0.2690
CID INTEL PD -0.1961 -0.1995

CID BLUE_TANK PD 0 0
CID NEUTRAL PD 0 0

ISR RED_TANK PID -0.0508 -0.0638
ISR MRS PID -0.1323 -0.1331

ISR INTEL PID 0 0
ISR BLUE_TANK PID -0.0914 -0.0933

ISR NEUTRAL PID -0.1144 -0.1185
CID RED_TANK PID -0.1218 -0.1367

CID MRS PID -0.1755 -0.1796
CID INTEL PID -0.1723 -0.1741

CID BLUE_TANK PID 0 0
CID NEUTRAL PID 0 0
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Table A.5  MOP to MOE Translation Matrix, T. 
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Table A.6  Fractional Factorial Design Matrix. 
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Appendix B.  Surrogate Model MATLAB® Subroutines. 

 
SUBROUTINE  ATO 
% author:  Capt Brian Bassham 
% date:    24 Apr 02 
% Revised: 30 Apr 02 
 
j = 1; 
for i = 1:Total_TGTs 
 if TGT_List(i,6) ~= 4 & TGT_List(i,6) ~= 5 & TGT_List(i,5) ~= 0 & 
TGT_List(i,9) < 1.0   %If the TGT is NOT CLASSIFIED as a 
Blue_Tank/Neutral, IS DETECTED and NOT DEAD 
      Strike_List(j,1) = TGT_List(i,6);   % What the ISR thinks it is 
      Strike_List(j,2) = TGT_List(i,1);   % What it actually is 
      Strike_List(j,3) = TGT_List(i,2);   % Its X position 
      Strike_List(j,4) = TGT_List(i,3);   % Its Y position 
      Strike_List(j,5) = TGT_List(i,8);   % Its target number 
      j = j + 1; 
   end 
end 
     
Strike_List = sortrows(Strike_List,1);  
%Sort the list based upon the ISR's classification   
%Note: EADSIM2 assumes a priority: Red_Tank, MRS, Intel. 
 
 
 
SUBROUTINE BDA 
function [New]=BDA(a,b,N,M) 
 
if b == 1 
    for j = 1:N 
        if M(j,8) == a 
            M(j,9) = rand(1) + M(j,9); 
        end 
    end 
end 
 
 
if b == 2 
    for j = 1:N 
        if M(j,8) == a 
            M(j,9) = 1; 
        end 
    end       
end 
 
New = M; 
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SUBROUTINE CID 
% author:  Capt Brian Bassham 
% date:    24 Apr 02 
% Revised: 30 APR 02 
 
Fighter_Size = min(Num_CID,size(Strike_List,1)); 
 
for i = 1:Fighter_Size    
   Fighter(i,1:4)  = Strike_List(i,1:4); 
   Fighter(i,5:7)    = [0   0   0]; 
   Fighter(i,8:9)  = [0.5  0.05]; 
   Fighter(i,10)   = Strike_List(i,5); 
end 
 
%Calculate the Range of the CID platform to the TGT 
%for i = 1:Fighter_Size 
%   Fighter(i,5) = sqrt((Fighter(i,3)-Fighter(i,8))^2+(TGT_List(i,4)-
Fighter(i,9))^2); 
%end 
 
%Start the CID strike loop 
%[1] Determine if the CID radar can detect the TGT 
for i = 1:Fighter_Size 
    rn = rand(1); 
    if rn < PD_CID(Fighter(i,2))        %Determine if the CID platform 
detects the TGT (Use actual ID to determine result) 
        Fighter(i,6) = 1; 
    else 
        Fighter(i,6) = 0; 
    end 
%    if Fighter(i,4) <= 0.25 | TGT_List(i,4) >= 0.95 
%      Fighter(i,5) = 0;        %The detection setting is overwritten 
if out of range 
%   end 
 
%[2] Classify the detected TGT      
    if Fighter(i,6) == 1         
      rn = rand(1); 
      if rn <= PID_CID(Fighter(i,2),1)          %Base result upon 
actual ID 
         Fighter(i,7) = 1; 
      elseif rn <= PID_CID(Fighter(i,2),2) 
         Fighter(i,7) = 2; 
      elseif rn <= PID_CID(Fighter(i,2),3) 
         Fighter(i,7) = 3; 
      elseif rn <= PID_CID(Fighter(i,2),4) 
         Fighter(i,7) = 4; 
      else 
         Fighter(i,7) = 5; 
      end 
    end 
     
    %[3] Attempt to destroy TGT, if the CID and ISR classifications 
agree 
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    if Fighter(i,7) == Fighter(i,1)  
        %Determine if the bomb is a dumb bomb or precision-guided 
munition 
        rn3 = rand(1); 
        if rn3 < 0.5 
           Damage_Distance = Dumb_Damage_Distance; 
           Dumb_Bombs = Dumb_Bombs + 1; 
        else 
          Damage_Distance = Precision_Damage_Distance; 
           Precision_Bombs = Precision_Bombs + 1; 
        end 
        % The CID platform fires 
      rn = rand(1); 
        Weapons_Expended = Weapons_Expended + 1;                    
        %Incidental Damage Loop 
        for h=1:Total_TGTs 
            if (TGT_List(h,2) > (Fighter(i,3)- Damage_Distance)) & 
(TGT_List(h,2) < (Fighter(i,3)+ Damage_Distance))      %if TGT is in X-
range               
                if (TGT_List(h,3) > (Fighter(i,4)- Damage_Distance)) & 
(TGT_List(h,3) < (Fighter(i,4)+ Damage_Distance))      %if TGT is in Y-
range 
                    if TGT_List(h,9) < 1.0                                             
%if TGT is alive 
                        if  TGT_List(h,8) ~= Fighter(i,10)                             
%if TGT is not original TGT 
                            TGT_List(h,9) = rand(1); 
                        end 
                    end                                     
                end                         
            end                 
        end  
                
        if rn < Damage     
          if Fighter(i,2) < Friendly_Level 
              Hostiles_Damaged = Hostiles_Damaged + 1; 
              TGT_List = BDA(Fighter(i,10),1,Total_TGTs,TGT_List); 
          elseif Fighter(i,2) > Friendly_Level 
              Neutrals_Damaged = Neutrals_Damaged + 1; 
              TGT_List = BDA(Fighter(i,10),2,Total_TGTs,TGT_List); 
          else 
              Allies_Damaged = Allies_Damaged + 1; 
              TGT_List = BDA(Fighter(i,10),1,Total_TGTs,TGT_List); 
          end 
           
        elseif rn < Kill 
          if Fighter(i,2) < Friendly_Level 
              Hostiles_Killed = Hostiles_Killed + 1; 
              TGT_List = BDA(Fighter(i,10),2,Total_TGTs,TGT_List); 
          elseif Fighter(i,2) > Friendly_Level 
              Neutrals_Killed = Neutrals_Killed + 1; 
              TGT_List = BDA(Fighter(i,10),2,Total_TGTs,TGT_List); 
          else 
              Frat = Frat + 1; 
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              TGT_List = BDA(Fighter(i,10),2,Total_TGTs,TGT_List);  
          end 
        
        else 
          Weapon_Miss = Weapon_Miss + 1;           
        end 
    end 
end 
                 
 
SUBROUTINE EADSIM2 
function [Value,MOEsM,MOPs]=  EADSIM2(A,B,C,D,E,F) 
% EADSIM2 is a set of Matlab subroutines designed to mimic the effects 
of ATR technology in an  
% operational environment as executed in the EADSIM combat model.  This 
model is created for 
% support of Capt Bassham's dissertation research on a new ATR CS 
evaluation methodology. 
% author:  Capt Brian Bassham 
% date:    24 Apr 02 
% Revised: 16 May 02  
 
clear TGT_List;clear Strike_List;clear Fighter;clear Damaged_TGTs 
 
%MOPs of the ATR in Question 
%Probabilities of Detection 
PD_ISR   = [0.92  0.92 0.92  0.92     0.92]; 
PD_CID      = [0.65     0.65  0.65  0.65     0.65]; 
 
%Probabilities of Identification/Misidentification 
%Based upon: [1] Red_Tank [2] MSR [3] Intel [4] Blue_Tank [5] Neutral 
Object 
%PID for ISR must be > 0.7 
%PID for CID must be > 0.95 
PID_ISR   = [  0.80 0.82 0.87 0.97     1.0;    
        0.03 0.83 0.87 0.92     1.0;                  
        0.04 0.09 0.89 0.92     1.0;     
        0.12 0.13 0.15 0.95     1.0;     
              0.03 0.05 0.15 0.20     1.0];                
PID_CID     = [  0.92 0.93 0.95 0.99     1.0;    
              0.02 0.94 0.97 0.99     1.0;     
              0.01 0.02 0.94 0.96     1.0;     
        0.05 0.06 0.07 0.99     1.0;     
                    0.01 0.02 0.07 0.08     1.0];  
 
PD_ISRM = [mean(PD_ISR(1:3)) PD_ISR(4) PD_ISR(5)]; 
PD_CIDM = [mean(PD_CID(1:3)) PD_CID(4) PD_CID(5)]; 
PID_ISRM = [mean([PID_ISR(1,1) PID_ISR(2,2)-PID_ISR(2,1) PID_ISR(3,3)-
PID_ISR(3,2)])  PID_ISR(4,4)-PID_ISR(4,3)  PID_ISR(5,5)-PID_ISR(5,4)]; 
PID_CIDM = [mean([PID_CID(1,1) PID_CID(2,2)-PID_CID(2,1) PID_CID(3,3)-
PID_CID(3,2)])  PID_CID(4,4)-PID_CID(4,3)  PID_CID(5,5)-PID_CID(5,4)];                  
MOPs = [PD_ISRM PID_ISRM PD_CIDM PID_CIDM]';    
 
%False Alarm Rate 
FAR = 0.0007; 



 

B-5  

 
%Combat Model Outcome Percentages 
Kill      = 0.75;         %Friend's ability to strike a TGT 
Damage         = 0.23;         %Friend's ability to damage a TGT 
Dumb_Damage_Distance = 0.035;     %TGTs within a certain radius of dumb 
bombs are damaged 
Precision_Damage_Distance = 0.015;     %TGTs within a certain radius of 
precision bombs are damaged 
Dumb_Bombs = 0; 
Precision_Bombs = 0; 
 
%Force Initialization (Based upon User inputs): 
http://www.army.mil/CMH-PG/books/www/Wwindx.htm 
Num_Red_Tank = A;   %Assume crew of 5   50 mph    >3000 m    
 [T-72] 
Num_MRS   = B;            %Assume crew of 5   46 mph   >20,380 m  
 (40) [BM-21] 
Num_Intel  = C;   %Assume crew of 5   65 mph        
 [Hummer or M1974] 
Num_Blue_Tank = D;   %Assume crew of 4   41 mph    >3000 m    
 [M1A1] 
Num_Neutral    = E;       %Assume crew of 2   50 mph 
Total_TGTs    = Num_Red_Tank + Num_MRS + Num_Intel + Num_Blue_Tank + 
Num_Neutral; 
Red_Forces     = A + B; 
Red_C2   = C; 
Red_Total  = Red_Forces + Red_C2; 
Num_CID    = F;       %The number of Allied fighters available for 
vectoring 
Friendly_Level = 4;  %The number at which TGTs not to be attacked begin 
(Blue_Tanks & Neutrals are not to be hit) 
 
%MOE Initialization 
Frat              = 0; 
Allies_Damaged    = 0; 
Hostiles_Killed   = 0; 
Hostiles_Damaged  = 0; 
Neutrals_Damaged  = 0; 
Neutrals_Killed   = 0; 
Weapons_Expended = 0; 
Weapon_Miss   = 0; 
Red_Tank_Damaged    = 0; 
Red_Tank_Dead       = 0; 
MRS_Damaged = 0; 
MRS_Dead = 0; 
Intel_Damaged = 0; 
Intel_Dead = 0; 
Blue_Tank_Damaged = 0; 
Blue_Tank_Dead = 0; 
Neutral_Damaged = 0; 
Neutral_Dead = 0; 
 
 
%Create the target list  
%The nine columns are: 
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%[TGT_Type      X Position Y Position Range_to_ISR Detected?
 ID_Type?  Last_ID_Type       TGT #       Dead/Damaged ]  
TGT_List = zeros(Total_TGTs,9); 
 
%Create the Air Tasking Order (ATO)   
%The five columns are: 
%[ID_Type  Actual_Type  X Position  Y Position TGT #]  
Strike_List = zeros(1,5); 
 
%Create the Fighter's target list  
%The 10 columns are: 
%[Classified_Type  Actual_Type  TGT_X_Position  TGT_Y_Position   
Range_to_CID Detected?   Classified As X_Pos_Fighter Y_Pos_Fighter   
TGT #]   
Fighter = zeros(Num_CID,10); 
 
% Begin Combat Model Execution 
Scenario  %Places objects in the scene and generates a starting map 
 
Loops = 10; 
 
%while ((Red_Tank_Damaged + Red_Tank_Dead + MRS_Damaged + MRS_Dead + 
Intel_Damaged + Intel_Dead)/Red_Total) < 1.0 
for l=1:Loops 
%   ((Red_Tank_Damaged + Red_Tank_Dead + MRS_Damaged + MRS_Dead + 
Intel_Damaged + Intel_Dead)/Red_Total)  
   ISR   %Simulates the ISR platform detecting/classifying 
targets & calls ATO (Strike List generation) & CID (Vectors fighters) 
modules 
   Stats 
%   Loops = Loops + 1; 
end 
Stats 
[Value,H]=warfighter_curves(MOEs,1); 
 
 
 
SUBROUTINE ISR 
% author:  Capt Brian Bassham 
% date:    24 Apr 02 
% Revised: 01 May 02 
 
% This initializes the band width of the ISR platform's (SAR) 
visibility 
% The band will stretch across the entire map but will be limited to 
the  
% Y-boundaries between 0.25 and 0.8.  Thus, targets above and below 
this band will 
% not be detected unless they move into it or the ISR platform moves 
closer to/further away. 
 
%Run through each TGT to see if it can be detected and Classified 
%Update the TGT List 
for i = 1:size(TGT_List,1)    
   %Calculate Range to ISR Platform 
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   TGT_List(i,4) = sqrt((TGT_List(i,2)-XPos_Blue_ISR)^2+(TGT_List(i,3)-
YPos_Blue_ISR)^2); 
   %The Last ID Type is set as the previously detected ID 
   TGT_List(i,7) = TGT_List(i,6); 
   % Can the TGT be detected?  Based upon the PD value of the ISR 
sensor 
   rn = rand(1); 
   if rn <= PD_ISR(TGT_List(i,1))  
      TGT_List(i,5) = 1;    
   else 
      TGT_List(i,5) = 0; 
      TGT_List(i,6) = 0;  %If not detected this turn then the 
Classified ID is set back to nothing 
   end    
   % The TGT cannot be detected if outside of the range of the ISR 
Platform (overwrites previous result) 
   if TGT_List(i,4) <= 0.0 | TGT_List(i,4) >= 1.95 
      TGT_List(i,5) = 0;        %The detection setting is overwritten 
if out of range 
   end 
   % Identify TGT as...based upon PID value of the ISR sensor 
   if TGT_List(i,5)==1      %If the TGT was detected 
      rn = rand(1); 
      if rn <= PID_ISR(TGT_List(i,1),1) 
         TGT_List(i,6) = 1; 
      elseif rn <= PID_ISR(TGT_List(i,1),2) 
         TGT_List(i,6) = 2; 
      elseif rn <= PID_ISR(TGT_List(i,1),3) 
         TGT_List(i,6) = 3; 
      elseif rn <= PID_ISR(TGT_List(i,1),4) 
         TGT_List(i,6) = 4; 
      else 
         TGT_List(i,6) = 5; 
      end 
   end 
   %Assign a TGT Number 
   TGT_List(i,8) = i; 
end 
 
TGT_List = sortrows(TGT_List,4);   %Randomize the entries so that 
the Red_Tanks are not always chosen first. 
 
ATO  %Calls the subroutine that generates the ATO 
CID  %Calls the subroutine that allows the Fighters to strike their 
TGTs 
 
%Change the ISR Platform's position 
XPos_Blue_ISR = (0.2+0.6*rand(1)); 
 
 
SUBROUTINE MAP 
% The map is assumed to be a unit square with (0,0) being the lower 
left corner 
% author:  Capt Brian Bassham 
% date:    25 Apr 02 
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% Revised:  
 
%This plots the objects in their original starting places within the 
scenario 
figure(1)  
plot(TGT_List(1:Level_1,2),TGT_List(1:Level_1,3),'rv') 
hold on 
plot(TGT_List(Level_1+1:Level_2,2),TGT_List(Level_1+1:Level_2,3),'rd') 
hold on 
plot(TGT_List(Level_2+1:Level_3,2),TGT_List(Level_2+1:Level_3,3),'rs') 
hold on 
plot(TGT_List(Level_3+1:Level_4,2),TGT_List(Level_3+1:Level_4,3),'b^') 
hold on 
plot(TGT_List(Level_4+1:Level_5,2),TGT_List(Level_4+1:Level_5,3),'gs') 
hold on 
plot(XPos_Blue_Airfield,YPos_Blue_Airfield,'bx',XPos_Blue_ISR,YPos_Blue
_ISR,'bo') 
hold on 
axis([0 1 0 1]) 
hold off 
 
SUBROUTINE MAP2 
% The map is assumed to be a unit square with (0,0) being the lower 
left corner 
% author:  Capt Brian Bassham 
% date:    25 Apr 02 
% Revised:  
 
TGT_List=sortrows(TGT_List,1); 
 
%This plots the objects and includes destoyed/damaged objects 
figure(2)  
plot(TGT_List(1:Level_1,2),TGT_List(1:Level_1,3),'rv') 
hold on 
plot(TGT_List(Level_1+1:Level_2,2),TGT_List(Level_1+1:Level_2,3),'rd') 
hold on 
plot(TGT_List(Level_2+1:Level_3,2),TGT_List(Level_2+1:Level_3,3),'rs') 
hold on 
plot(TGT_List(Level_3+1:Level_4,2),TGT_List(Level_3+1:Level_4,3),'b^') 
hold on 
plot(TGT_List(Level_4+1:Level_5,2),TGT_List(Level_4+1:Level_5,3),'gs') 
hold on 
plot(Damaged_TGTs(:,2),Damaged_TGTs(:,3),'kp') 
hold on 
plot(XPos_Blue_Airfield,YPos_Blue_Airfield,'bx',XPos_Blue_ISR,YPos_Blue
_ISR,'bo') 
hold on 
axis([0 1 0 1]) 
hold off 
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SUBROUTINE SCENARIO 
% This subroutine positions the objects within the scenario 
% The map is assumed to be a unit square with (0,0) being the lower 
left corner 
% author:  Capt Brian Bassham 
% date:    24 Apr 02 
% Revised: 25 Apr 02 
 
%Variables for ease of programming 
Level_1 = Num_Red_Tank; 
Level_2 = Num_Red_Tank + Num_MRS; 
Level_3 = Num_Red_Tank + Num_MRS + Num_Intel; 
Level_4 = Num_Red_Tank + Num_MRS + Num_Intel + Num_Blue_Tank; 
Level_5 = Num_Red_Tank + Num_MRS + Num_Intel + Num_Blue_Tank + 
Num_Neutral; 
 
%This places Red_Tanks in a box with X boundaries at 0.2-0.8 & Y 
boundaries between 0.5 & 0.7  
for i = 1: Level_1 
   TGT_List(i,1) = 1; 
   TGT_List(i,2) = (0.2+0.8*rand(1)); 
   TGT_List(i,3) = (0.5+0.2*rand(1)); 
end 
%This places MRSs in a box with X boundaries at 0.4-0.9 & Y boundaries 
between 0.5 & 0.75 
for i = Level_1 + 1:Level_2 
   TGT_List(i,1) = 2; 
   TGT_List(i,2) = (0.4+0.5*rand(1)); 
   TGT_List(i,3) = (0.5+0.25*rand(1)); 
end 
%This places Intel Trucks in a box with X boundaries at 0.5-0.95 & Y 
boundaries between 0.65 & 0.9 
for i = Level_2 + 1:Level_3 
   TGT_List(i,1) = 3;    
   TGT_List(i,2) = (0.5+0.45*rand(1)); 
   TGT_List(i,3) = (0.65+0.25*rand(1)); 
end 
%This places Blue_Tanks in a box with X boundaries at 0.2-0.8 & Y 
boundaries between 0.2 & 0.6 
for i = Level_3 + 1:Level_4 
   TGT_List(i,1) = 4;    
   TGT_List(i,2) = (0.2+0.6*rand(1)); 
   TGT_List(i,3) = (0.2+0.4*rand(1)); 
end 
%This places Neutral Objects in a box with X boundaries at 0.3-0.9 & Y 
boundaries between 0.3 & 0.8 
for i = Level_4+ 1:Level_5 
   TGT_List(i,1) = 5;    
   TGT_List(i,2) = (0.3+0.6*rand(1)); 
   TGT_List(i,3) = (0.3+0.5*rand(1)); 
end 
 
%This places the Blue_Airfield at the following X-Y Coordinates 
XPos_Blue_Airfield = 0.5; 
YPos_Blue_Airfield = 0.05; 
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%This places the Blue_ISR at the following X-Y Coordinates 
XPos_Blue_ISR = (0.2+0.6*rand(1)); 
YPos_Blue_ISR = 0.1; 
 
%MAP 
 
 
SUBROUTINE STATS 
% author:  Capt Brian Bassham 
% date:    25 Apr 02 
% Revised: 14 May 02 
 
Weapon_Info = [Weapons_Expended  Weapon_Miss]; 
 
FEN_Damaged_Killed = [Allies_Damaged  Frat  Hostiles_Damaged   
Hostiles_Killed Neutrals_Damaged  Neutrals_Killed]; 
 
Damaged_TGTs=zeros(1,9); 
 
j=1; 
for k = 1:Total_TGTs 
   if TGT_List(k,9) > 0.0 
      Damaged_TGTs(j,:) = TGT_List(k,:); 
      j = j+1; 
   end 
end 
 
%Damaged_TGTs; 
Incidental_Allied_Damage  = 0; 
Incidental_Allied_Kill   = 0; 
Incidental_Hostile_Damage  = 0; 
Incidental_Hostile_Kill  = 0; 
Incidental_Neutral_Damage  = 0; 
Incidental_Neutral_Kill  = 0; 
Red_Tank_Damaged    = 0; 
Red_Tank_Dead       = 0; 
MRS_Damaged = 0; 
MRS_Dead = 0; 
Intel_Damaged = 0; 
Intel_Dead = 0; 
Blue_Tank_Damaged = 0; 
Blue_Tank_Dead = 0; 
Neutral_Damaged = 0; 
Neutral_Dead = 0; 
 
%The loop which calculates proximity kills/hits 
for k=1:j-1 
   if Damaged_TGTs(k,1) < Friendly_Level & Damaged_TGTs(k,9) < 1.0 
      Incidental_Hostile_Damage = Incidental_Hostile_Damage + 1; 
   elseif Damaged_TGTs(k,1) < Friendly_Level & Damaged_TGTs(k,9) >= 1.0 
      Incidental_Hostile_Kill = Incidental_Hostile_Kill + 1; 
   elseif Damaged_TGTs(k,1) == Friendly_Level & Damaged_TGTs(k,9) < 1.0 
      Incidental_Allied_Damage = Incidental_Allied_Damage + 1; 
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   elseif Damaged_TGTs(k,1) == Friendly_Level & Damaged_TGTs(k,9) >= 
1.0 
      Incidental_Allied_Kill = Incidental_Allied_Kill + 1; 
   elseif Damaged_TGTs(k,1) > Friendly_Level & Damaged_TGTs(k,9) < 1.0 
      Incidental_Neutral_Damage = Incidental_Neutral_Damage + 1; 
   else 
      Incidental_Neutral_Damage = Incidental_Neutral_Damage + 1; 
   end 
end 
 
%The loop which calculates the  
for k=1:j-1 
   if Damaged_TGTs(k,1) == 1 & Damaged_TGTs(k,9) < 1.0 
      Red_Tank_Damaged = Red_Tank_Damaged + 1; 
   elseif Damaged_TGTs(k,1) == 1 & Damaged_TGTs(k,9) >= 1.0 
      Red_Tank_Dead = Red_Tank_Dead + 1;       
   elseif Damaged_TGTs(k,1) == 2 & Damaged_TGTs(k,9) < 1.0 
      MRS_Damaged = MRS_Damaged + 1; 
   elseif Damaged_TGTs(k,1) == 2 & Damaged_TGTs(k,9) >= 1.0 
      MRS_Dead = MRS_Dead + 1;       
   elseif Damaged_TGTs(k,1) == 3 & Damaged_TGTs(k,9) < 1.0 
      Intel_Damaged = Intel_Damaged + 1; 
   elseif Damaged_TGTs(k,1) == 3 & Damaged_TGTs(k,9) >= 1.0 
      Intel_Dead = Intel_Dead + 1; 
   elseif Damaged_TGTs(k,1) == 4 & Damaged_TGTs(k,9) < 1.0 
      Blue_Tank_Damaged = Blue_Tank_Damaged + 1; 
   elseif Damaged_TGTs(k,1) == 4 & Damaged_TGTs(k,9) >= 1.0 
      Blue_Tank_Dead = Blue_Tank_Dead + 1;    
   elseif Damaged_TGTs(k,1) == 5 & Damaged_TGTs(k,9) < 1.0 
      Neutral_Damaged = Neutral_Damaged + 1; 
   else 
      Neutral_Dead = Neutral_Dead + 1; 
   end 
end 
Incidental = [Incidental_Allied_Damage  Incidental_Allied_Kill  
Incidental_Hostile_Damage Incidental_Hostile_Kill 
Incidental_Neutral_Damage Incidental_Neutral_Kill]; 
Total_Damage = [Red_Tank_Damaged  Red_Tank_Dead  MRS_Damaged  MRS_Dead  
Intel_Damaged  Intel_Dead  Blue_Tank_Damaged  Blue_Tank_Dead  
Neutral_Damaged  Neutral_Dead]; 
 
% [1]  Pct Remaining Dumb Bombs       [2]  Pct Remaining WMD          
[3]  Pct Remaining CMs & S/S         [4]  Pct Remaining A/A & S/A 
% [5]  Pct Red Systems Damaged       [6]  Pct Red Personnel Destroyed   
[7]  Pct Red C2 Destoyed            [8]  Empty  
% [9]  Length of Battle               [10] # of Dead Civilians           
[11] # of Neutral Objects Destroyed  [12] # of Fratricide occurrences 
% [13] Pct Blue Systems Remaining     [14] Pct Blue Personnel Remaining  
[15] Pct Blue C2 Remaining           [16] Empty 
% [17]  Pct Remaining Dumb Bombs      [18] Pct Remaining Precision 
Bombs [19] Pct Remaining CMs & S/S         [20] Pct Remaining A/A & S/A 
 
MOEs = [ 0 0 1-(MRS_Dead/B) 0; 



 

B-12  

   (Red_Tank_Damaged+Red_Tank_Dead+MRS_Damaged+MRS_Dead)/Red_Forces 
(5*(Red_Tank_Dead+MRS_Dead+Intel_Dead))/(5*Red_Total)  (Intel_Damaged + 
Intel_Dead)/Red_C2   0; 
   Loops     Neutral_Damaged+Neutral_Dead*(round(rand(1)+1))   
Neutral_Damaged+Neutral_Dead  Frat; 
   1-((Blue_Tank_Damaged+Blue_Tank_Dead)/D)  ((Num_Blue_Tank*5)-
(Blue_Tank_Dead*5))/(Num_Blue_Tank*5)   0 0;   
   1-(Dumb_Bombs/(Loops*Num_CID*0.5))   1-
(Precision_Bombs/(Loops*Num_CID*0.5)) 0 0]; 
 
MOEsM = [0 0 1-(MRS_Dead/B) 0 
(Red_Tank_Damaged+Red_Tank_Dead+MRS_Damaged+MRS_Dead)/Red_Forces 
(5*(Red_Tank_Dead+MRS_Dead+Intel_Dead))/(5*Red_Total)  (Intel_Damaged + 
Intel_Dead)/Red_C2 Loops     Neutral_Damaged+Neutral_Dead*2   
Neutral_Damaged+Neutral_Dead  Frat 1-
((Blue_Tank_Damaged+Blue_Tank_Dead)/D)  ((Num_Blue_Tank*5)-
(Blue_Tank_Dead*5))/(Num_Blue_Tank*5)   0 1-
(Dumb_Bombs/(Loops*Num_CID*0.5))   1-
(Precision_Bombs/(Loops*Num_CID*0.5)) 0 0]'; 
 
% [1]  Pct Remaining Dumb Bombs   [2]  Pct Remaining Precision Bombs     
[3]  Pct of Weapons Expended           [4]  Pct of Expended Weapons 
that Miss 
% [5]  Number of Damaged Neutrals [6]  Number of Dead Neutrals           
[7]  Estimate of Dead Civilians        [8]  Length of Battle  
% [9]  Pct Blue Weapons Remaining [10] Number of Damaged/Dead Blue Wpns  
[11] Pct of Blue Personnel Remaining   [12] # of Fratricide occurrences 
% [13] Pct Red Forces Damaged     [14] Pct Red C2 Damaged                
[15] Pct of S/S Missiles Remaining     [16] Pct of Red Personnel Killed 
 
%MOEs = [1-(Dumb_Bombs/(Loops*Num_CID*0.5)) 1-
(Precision_Bombs/(Loops*Num_CID*0.5))    
Weapons_Expended/(Loops*Num_CID)    Weapon_Miss/Weapons_Expended; 
%        Neutral_Damaged    Neutral_Dead     
Neutral_Damaged+Neutral_Dead*2    Loops; 
%        1-((Blue_Tank_Damaged+Blue_Tank_Dead)/D) 
 Blue_Tank_Dead+Blue_Tank_Damaged   ((Num_Blue_Tank*5)-
(Blue_Tank_Dead*5))/(Num_Blue_Tank*5)   Frat; 
%        
(Red_Tank_Damaged+Red_Tank_Dead+MRS_Damaged+MRS_Dead)/Red_Forces     
(Intel_Damaged + Intel_Dead)/Red_C2    1-(MRS_Dead/B)   (5*(Red_Total-
(Red_Tank_Dead+MRS_Dead+Intel_Dead)))/(5*Red_Total)]; 
%MAP2 
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Appendix C.  Glossary of Acronyms and Abbreviations. 

2AFC  two-alternative, forced-choice 

ACC Air Combat Command 

AFRL Air Force Research Laboratory 

AGRI Air-to-Ground Radar Imaging 

ATO Air Tasking Order 

ATR Automatic Target Recognition 

AUC area under the curve 

AVC All Vector Comparison 

BDA Battle Damage Assessment 

BEM Bechhofer, Elmaghraby, and Morse 

CA classification accuracy 

CI confidence interval 

CID Combat Identification 

COMPASE Comprehensive ATR Scientific Evaluation 

CS Classification System 

DA Decision Analysis 

DOE design of experiments 

EADSIM  Extended Air Defense Simulation 

EUROC Expected Utility Receiver Operating Characteristic 

FEN friend/enemy/neutral 

FN false negative 

FP false positive 
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FROC Frequency Receiver Operating Characteristic 

GUI graphical user interface 

IFF  Identification Friend or Foe 

ISR Intelligence/Surveillance/Reconnaissance 

K-S Komolgorov-Smirnov 

LGP Linear Goal Program/Programming 

LROC Localization Receiver Operating Characteristic 

MBT Main Battle Tank 

MOE Measure of Effectiveness 

MOP Measure of Performance 

MRLS Mobile Rocket Launcher System  

MSP Multinominal Selection Procedure, Multinomial Selection Problem 

MSTAR Moving and Stationary Target Acquisition and Recognition 

NCTI Non-cooperative Target Identification 

NCTR Non-cooperative Target Recognition 

N-N binormal 

PDF probability distribution function 

RAC Response Analysis Characteristic 

ROC Receiver Operating Characteristic 

ROI region of interest 

SAR synthetic aperture radar 

SME subject matter expert 

TGT target 
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TN true negative 

TP true positive 

USAF United States Air Force 

VV&A  Verification, Validation, and Accreditation 
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